These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 30114148)
1. Efficient and robust recurrence relations for the Zernike circle polynomials and their derivatives in Cartesian coordinates. Andersen TB Opt Express; 2018 Jul; 26(15):18878-18896. PubMed ID: 30114148 [TBL] [Abstract][Full Text] [Related]
2. Orthonormal vector general polynomials derived from the Cartesian gradient of the orthonormal Zernike-based polynomials. Mafusire C; Krüger TPJ J Opt Soc Am A Opt Image Sci Vis; 2018 Jun; 35(6):840-849. PubMed ID: 29877326 [TBL] [Abstract][Full Text] [Related]
3. Recurrence relations for the Cartesian derivatives of the Zernike polynomials. Stephenson PC J Opt Soc Am A Opt Image Sci Vis; 2014 Apr; 31(4):708-15. PubMed ID: 24695132 [TBL] [Abstract][Full Text] [Related]
4. Recursive formula to compute Zernike radial polynomials. Honarvar Shakibaei B; Paramesran R Opt Lett; 2013 Jul; 38(14):2487-9. PubMed ID: 23939089 [TBL] [Abstract][Full Text] [Related]
5. Study of Zernike polynomials of an elliptical aperture obscured with an elliptical obscuration. Hasan SY; Shaker AS Appl Opt; 2012 Dec; 51(35):8490-7. PubMed ID: 23262546 [TBL] [Abstract][Full Text] [Related]
6. Orthonormal curvature polynomials over a unit circle: basis set derived from curvatures of Zernike polynomials. Zhao C; Burge JH Opt Express; 2013 Dec; 21(25):31430-43. PubMed ID: 24514717 [TBL] [Abstract][Full Text] [Related]
7. Zernike expansion of derivatives and Laplacians of the Zernike circle polynomials. Janssen AJ J Opt Soc Am A Opt Image Sci Vis; 2014 Jul; 31(7):1604-13. PubMed ID: 25121449 [TBL] [Abstract][Full Text] [Related]
8. Orthonormal polynomials in wavefront analysis: analytical solution. Mahajan VN; Dai GM J Opt Soc Am A Opt Image Sci Vis; 2007 Sep; 24(9):2994-3016. PubMed ID: 17767271 [TBL] [Abstract][Full Text] [Related]
9. Comparison of annular wavefront interpretation with Zernike circle polynomials and annular polynomials. Hou X; Wu F; Yang L; Chen Q Appl Opt; 2006 Dec; 45(35):8893-901. PubMed ID: 17119589 [TBL] [Abstract][Full Text] [Related]
10. Accuracy of Zernike polynomials in characterizing optical aberrations and the corneal surface of the eye. Carvalho LA Invest Ophthalmol Vis Sci; 2005 Jun; 46(6):1915-26. PubMed ID: 15914604 [TBL] [Abstract][Full Text] [Related]
11. Performance of Zernike polynomials in reconstructing raw-elevation data captured by Pentacam HR, Medmont E300 and Eye Surface Profiler. Wei Y; Lopes BT; Eliasy A; Wu R; Fathy A; Elsheikh A; Abass A Heliyon; 2021 Dec; 7(12):e08623. PubMed ID: 35005275 [TBL] [Abstract][Full Text] [Related]
12. Phase wavefront aberration modeling using Zernike and pseudo-Zernike polynomials. Rahbar K; Faez K; Attaran Kakhki E J Opt Soc Am A Opt Image Sci Vis; 2013 Oct; 30(10):1988-93. PubMed ID: 24322854 [TBL] [Abstract][Full Text] [Related]
13. Analytical method for the transformation of Zernike polynomial coefficients for scaled, rotated, and translated pupils. Li L; Zhang B; Xu Y; Wang D Appl Opt; 2018 Dec; 57(34):F22-F30. PubMed ID: 30645277 [TBL] [Abstract][Full Text] [Related]
14. Full-aperture wavefront reconstruction from annular subaperture interferometric data by use of Zernike annular polynomials and a matrix method for testing large aspheric surfaces. Hou X; Wu F; Yang L; Wu S; Chen Q Appl Opt; 2006 May; 45(15):3442-55. PubMed ID: 16708088 [TBL] [Abstract][Full Text] [Related]
15. Comparative assessment of orthogonal polynomials for wavefront reconstruction over the square aperture. Ye J; Gao Z; Wang S; Cheng J; Wang W; Sun W J Opt Soc Am A Opt Image Sci Vis; 2014 Oct; 31(10):2304-11. PubMed ID: 25401259 [TBL] [Abstract][Full Text] [Related]
17. Image description with generalized pseudo-Zernike moments. Xia T; Zhu H; Shu H; Haigron P; Luo L J Opt Soc Am A Opt Image Sci Vis; 2007 Jan; 24(1):50-9. PubMed ID: 17164842 [TBL] [Abstract][Full Text] [Related]
18. Orthonormal aberration polynomials for anamorphic optical imaging systems with circular pupils. Mahajan VN Appl Opt; 2012 Jun; 51(18):4087-91. PubMed ID: 22722284 [TBL] [Abstract][Full Text] [Related]
19. Orthonormal vector polynomials in a unit circle, Part I: Basis set derived from gradients of Zernike polynomials. Zhao C; Burge JH Opt Express; 2007 Dec; 15(26):18014-24. PubMed ID: 19551099 [TBL] [Abstract][Full Text] [Related]
20. Jacobi circle and annular polynomials: modal wavefront reconstruction from wavefront gradient. Sun W; Wang S; He X; Xu B J Opt Soc Am A Opt Image Sci Vis; 2018 Jul; 35(7):1140-1148. PubMed ID: 30110306 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]