These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 30114148)
21. Objective refraction from monochromatic wavefront aberrations via Zernike power polynomials. Robert Iskander D; Davis BA; Collins MJ; Franklin R Ophthalmic Physiol Opt; 2007 May; 27(3):245-55. PubMed ID: 17470237 [TBL] [Abstract][Full Text] [Related]
22. Integral-based parallel algorithm for the fast generation of the Zernike polynomials. Hsieh YH; Yu YT; Lai YH; Hsieh MX; Chen YF Opt Express; 2020 Jan; 28(2):936-947. PubMed ID: 32121813 [TBL] [Abstract][Full Text] [Related]
23. Average gradient of Zernike polynomials over polygons. Akondi V; Dubra A Opt Express; 2020 Jun; 28(13):18876-18886. PubMed ID: 32672177 [TBL] [Abstract][Full Text] [Related]
24. Robust fitting of Zernike polynomials to noisy point clouds defined over connected domains of arbitrary shape. Ibañez DR; Gómez-Pedrero JA; Alonso J; Quiroga JA Opt Express; 2016 Mar; 24(6):5918-33. PubMed ID: 27136788 [TBL] [Abstract][Full Text] [Related]
25. General form for obtaining unit disc-based generalized orthogonal moments. Zhu H; Yang Y; Zhu X; Gui Z; Shu H IEEE Trans Image Process; 2014 Dec; 23(12):5455-69. PubMed ID: 25361505 [TBL] [Abstract][Full Text] [Related]
29. New separated polynomial solutions to the Zernike system on the unit disk and interbasis expansion. Pogosyan GS; Wolf KB; Yakhno A J Opt Soc Am A Opt Image Sci Vis; 2017 Oct; 34(10):1844-1848. PubMed ID: 29036055 [TBL] [Abstract][Full Text] [Related]
31. Zernike olivary polynomials for applications with olivary pupils. Zheng Y; Sun S; Li Y Appl Opt; 2016 Apr; 55(12):3116-25. PubMed ID: 27140076 [TBL] [Abstract][Full Text] [Related]
32. Double Zernike expansion of the optical aberration function from its power series expansion. Braat JJ; Janssen AJ J Opt Soc Am A Opt Image Sci Vis; 2013 Jun; 30(6):1213-22. PubMed ID: 24323109 [TBL] [Abstract][Full Text] [Related]
33. Study of Zernike polynomials of an elliptical aperture obscured with an elliptical obscuration: comment. Díaz JA; Mahajan VN Appl Opt; 2013 Aug; 52(24):5962-4. PubMed ID: 24084998 [TBL] [Abstract][Full Text] [Related]
34. Systematic comparison of the use of annular and Zernike circle polynomials for annular wavefronts. Mahajan VN; Aftab M Appl Opt; 2010 Nov; 49(33):6489-501. PubMed ID: 21102675 [TBL] [Abstract][Full Text] [Related]
35. Comparative analysis of some modal reconstruction methods of the shape of the cornea from corneal elevation data. Martinez-Finkelshtein A; Delgado AM; Castro GM; Zarzo A; Alió JL Invest Ophthalmol Vis Sci; 2009 Dec; 50(12):5639-45. PubMed ID: 19608536 [TBL] [Abstract][Full Text] [Related]
36. An improved low order method for corneal reconstruction. Turuwhenua J Optom Vis Sci; 2008 Mar; 85(3):211-7. PubMed ID: 18317329 [TBL] [Abstract][Full Text] [Related]
37. Mathematical construction and perturbation analysis of Zernike discrete orthogonal points. Shi Z; Sui Y; Liu Z; Peng J; Yang H Appl Opt; 2012 Jun; 51(18):4210-4. PubMed ID: 22722299 [TBL] [Abstract][Full Text] [Related]
38. Zernike annular polynomials and optical aberrations of systems with annular pupils. Mahajan VN Appl Opt; 1994 Dec; 33(34):8125-7. PubMed ID: 20963042 [TBL] [Abstract][Full Text] [Related]
39. Generalization of Zernike polynomials for regular portions of circles and ellipses. Navarro R; López JL; Díaz JA; Sinusía EP Opt Express; 2014 Sep; 22(18):21263-79. PubMed ID: 25321506 [TBL] [Abstract][Full Text] [Related]
40. Modeling of corneal surfaces with radial polynomials. Iskander DR; Morelande MR; Collins MJ; Davis B IEEE Trans Biomed Eng; 2002 Apr; 49(4):320-8. PubMed ID: 11942723 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]