These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 30114283)

  • 1. Predicting segregation of multiple fruit-quality traits by using accumulated phenotypic records in citrus breeding.
    Imai A; Kuniga T; Yoshioka T; Nonaka K; Mitani N; Fukamachi H; Hiehata N; Yamamoto M; Hayashi T
    PLoS One; 2018; 13(8):e0202341. PubMed ID: 30114283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Segregation and Heritability of Male Sterility in Populations Derived from Progeny of Satsuma Mandarin.
    Goto S; Yoshioka T; Ohta S; Kita M; Hamada H; Shimizu T
    PLoS One; 2016; 11(9):e0162408. PubMed ID: 27589237
    [TBL] [Abstract][Full Text] [Related]  

  • 3. QTL mapping of male sterility and transmission pattern in progeny of Satsuma mandarin.
    Goto S; Yoshioka T; Ohta S; Kita M; Hamada H; Shimizu T
    PLoS One; 2018; 13(7):e0200844. PubMed ID: 30016346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. QTL mapping for fruit quality in Citrus using DArTseq markers.
    Curtolo M; Cristofani-Yaly M; Gazaffi R; Takita MA; Figueira A; Machado MA
    BMC Genomics; 2017 Apr; 18(1):289. PubMed ID: 28403819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-step genomic prediction of fruit-quality traits using phenotypic records of non-genotyped relatives in citrus.
    Imai A; Kuniga T; Yoshioka T; Nonaka K; Mitani N; Fukamachi H; Hiehata N; Yamamoto M; Hayashi T
    PLoS One; 2019; 14(8):e0221880. PubMed ID: 31465502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide association study and genomic prediction in citrus: Potential of genomics-assisted breeding for fruit quality traits.
    Minamikawa MF; Nonaka K; Kaminuma E; Kajiya-Kanegae H; Onogi A; Goto S; Yoshioka T; Imai A; Hamada H; Hayashi T; Matsumoto S; Katayose Y; Toyoda A; Fujiyama A; Nakamura Y; Shimizu T; Iwata H
    Sci Rep; 2017 Jul; 7(1):4721. PubMed ID: 28680114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome wide selection in Citrus breeding.
    Gois IB; Borém A; Cristofani-Yaly M; de Resende MD; Azevedo CF; Bastianel M; Novelli VM; Machado MA
    Genet Mol Res; 2016 Oct; 15(4):. PubMed ID: 27813590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic diversity among mandarins in fruit-quality traits.
    Goldenberg L; Yaniv Y; Kaplunov T; Doron-Faigenboim A; Porat R; Carmi N
    J Agric Food Chem; 2014 May; 62(21):4938-46. PubMed ID: 24828369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative analysis of juice volatiles in selected mandarins, mandarin relatives and other citrus genotypes.
    Yu Y; Bai J; Chen C; Plotto A; Baldwin EA; Gmitter FG
    J Sci Food Agric; 2018 Feb; 98(3):1124-1131. PubMed ID: 28731231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genomic prediction of trait segregation in a progeny population: a case study of Japanese pear (Pyrus pyrifolia).
    Iwata H; Hayashi T; Terakami S; Takada N; Saito T; Yamamoto T
    BMC Genet; 2013 Sep; 14():81. PubMed ID: 24028660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of the 'Haryejosaeng' mandarin cultivar by multiplex PCR-based SNP genotyping.
    Jin SB; Kim HB; Park S; Kim MJ; Choi CW; Yun SH
    Mol Biol Rep; 2020 Nov; 47(11):8385-8395. PubMed ID: 33165816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Citrus breeding, genetics and genomics in Japan.
    Omura M; Shimada T
    Breed Sci; 2016 Jan; 66(1):3-17. PubMed ID: 27069387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding the genetic basis of blueberry postharvest traits to define better breeding strategies.
    Casorzo G; Ferrão LF; Adunola P; Tavares Flores E; Azevedo C; Amadeu R; Munoz PR
    G3 (Bethesda); 2024 Sep; 14(9):. PubMed ID: 39052988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficiency of genomic selection for breeding population design and phenotype prediction in tomato.
    Yamamoto E; Matsunaga H; Onogi A; Ohyama A; Miyatake K; Yamaguchi H; Nunome T; Iwata H; Fukuoka H
    Heredity (Edinb); 2017 Feb; 118(2):202-209. PubMed ID: 27624117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-Enabled Estimates of Additive and Nonadditive Genetic Variances and Prediction of Apple Phenotypes Across Environments.
    Kumar S; Molloy C; Muñoz P; Daetwyler H; Chagné D; Volz R
    G3 (Bethesda); 2015 Oct; 5(12):2711-8. PubMed ID: 26497141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimating optimum and base selection indices in plant and animal breeding programs by development new and simple SAS and R codes.
    Rahimi M; Debnath S
    Sci Rep; 2023 Nov; 13(1):18977. PubMed ID: 37923801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of mitochondria origin on fruit quality in a citrus cybrid.
    Bassene JB; Berti L; Carcouet E; Dhuique-Mayer C; Fanciullino AL; Bouffin J; Ollitrault P; Froelicher Y
    J Agric Food Chem; 2008 Sep; 56(18):8635-40. PubMed ID: 18729377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple-trait breeding values for parental selection in self-pollinating crops.
    Bauer AM; Léon J
    Theor Appl Genet; 2008 Jan; 116(2):235-42. PubMed ID: 17955207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence of epistatic suppression of repeat fruiting in cultivated strawberry.
    Lewers KS; Castro P; Hancock JF; Weebadde CK; Die JV; Rowland LJ
    BMC Plant Biol; 2019 Sep; 19(1):386. PubMed ID: 31488054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of a Caffeic Acid 8-
    Ma G; Zhang L; Seoka M; Nakata A; Yahata M; Shimada T; Fujii H; Endo T; Yoshioka T; Kan T; Kato M
    J Agric Food Chem; 2022 Jan; 70(2):543-553. PubMed ID: 34964635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.