These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 30114574)

  • 21. Phosphate recovery from sewage sludge in combination with supercritical water oxidation.
    Stendahl K; Jäfverström S
    Water Sci Technol; 2003; 48(1):185-90. PubMed ID: 12926636
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phosphorus recovery from sewage sludge hydrochar: process optimization by response surface methodology.
    Tasca AL; Mannarino G; Gori R; Vitolo S; Puccini M
    Water Sci Technol; 2020 Dec; 82(11):2331-2343. PubMed ID: 33339788
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Leaching of phosphorus from incinerated sewage sludge ash by means of acid extraction followed by adsorption on orange waste gel.
    Biswas BK; Inoue K; Harada H; Ohto K; Kawakita H
    J Environ Sci (China); 2009; 21(12):1753-60. PubMed ID: 20131609
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phosphorus recycling in sewage treatment plants with biological phosphorus removal.
    Heinzmann B
    Water Sci Technol; 2005; 52(10-11):543-8. PubMed ID: 16459832
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phosphorus recovery from sewage sludge with a hybrid process of low pressure wet oxidation and nanofiltration.
    Blöcher C; Niewersch C; Melin T
    Water Res; 2012 Apr; 46(6):2009-19. PubMed ID: 22325934
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Leaching of heavy metals (Cu, Ni and Zn) and organic matter after sewage sludge application to Mediterranean forest soils.
    Toribio M; Romanyà J
    Sci Total Environ; 2006 Jun; 363(1-3):11-21. PubMed ID: 16316678
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A sustainable strategy for recovery of phosphorus as vivianite from sewage sludge via alkali-activated pyrolysis, water leaching and crystallization.
    Yang L; Guo X; Liang S; Yang F; Wen M; Yuan S; Xiao K; Yu W; Hu J; Hou H; Yang J
    Water Res; 2023 Apr; 233():119769. PubMed ID: 36841170
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Statistical optimization of titanium recovery from drinking water treatment residue using response surface methodology.
    Krishnan S; Zulkapli NS; Din MFM; Majid ZA; Honda M; Ichikawa Y; Sairan FM; Nasrullah M; Guntor NAA
    J Environ Manage; 2020 Feb; 255():109890. PubMed ID: 31790869
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sewage sludge management for phosphorus recovery as struvite in EBPR wastewater treatment plants.
    Pastor L; Marti N; Bouzas A; Seco A
    Bioresour Technol; 2008 Jul; 99(11):4817-24. PubMed ID: 17976981
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chromium recovery from tannery sludge and its ash, based on hydrometallurgical methods.
    Pantazopoulou E; Zouboulis A
    Waste Manag Res; 2020 Jan; 38(1):19-26. PubMed ID: 31405339
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phosphorus recovery from the sludge generated from a continuous bipolar mode electrocoagulation (CBME) system.
    Damaraju M; Yoshihara H; Bhattacharyya D; Panda TK; Kurilla KK
    Water Sci Technol; 2019 Apr; 79(7):1348-1356. PubMed ID: 31123234
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recovery of phosphorus and aluminium from sewage sludge ash by a new wet chemical elution process (SESAL-Phos-recovery process).
    Petzet S; Peplinski B; Bodkhe SY; Cornel P
    Water Sci Technol; 2011; 64(3):693-9. PubMed ID: 22097049
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Energy and phosphorous recovery through hydrothermal carbonization of digested sewage sludge.
    Marin-Batista JD; Mohedano AF; Rodríguez JJ; de la Rubia MA
    Waste Manag; 2020 Mar; 105():566-574. PubMed ID: 32169812
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hydrothermal conversion of dewatered sewage sludge: Focusing on the transformation mechanism and recovery of phosphorus.
    Shi Y; Luo G; Rao Y; Chen H; Zhang S
    Chemosphere; 2019 Aug; 228():619-628. PubMed ID: 31059960
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Factorial experimental design for recovering heavy metals from sludge with ion-exchange resin.
    Lee IH; Kuan YC; Chern JM
    J Hazard Mater; 2006 Dec; 138(3):549-59. PubMed ID: 16843592
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fe-As sludge stability and effluent quality for a two-stage As-contaminated water treatment with Fe(II) and aeration.
    Zhuang JM; Hobenshield E; Walsh T
    Environ Technol; 2009 Feb; 30(2):199-213. PubMed ID: 19278161
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Decontamination of sludge by the METIX-AC process. Part I: effects on sludge quality and leaching of chemicals.
    Barraoui D; Labrecque M; Blais JF
    Bioresour Technol; 2008 Mar; 99(5):1433-49. PubMed ID: 17382538
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Variation in metals during wet oxidation of sewage sludge.
    Zhang Z; Baroutian S; Munir MT; Young BR
    Bioresour Technol; 2017 Dec; 245(Pt A):234-241. PubMed ID: 28892696
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phosphorus extraction and sludge dissolution by acid and alkali treatments of polyaluminum chloride (PAC) treated wastewater sludge.
    Ali TU; Kim DJ
    Bioresour Technol; 2016 Oct; 217():233-8. PubMed ID: 26879203
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Leaching behavior of heavy metals from sewage sludge solidified by cement-based binders.
    Song F; Gu L; Zhu N; Yuan H
    Chemosphere; 2013 Jul; 92(4):344-50. PubMed ID: 23402917
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.