These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Does nutrition affect bone porosity and mineral tissue distribution in deer antlers? The relationship between histology, mechanical properties and mineral composition. Landete-Castillejos T; Currey JD; Ceacero F; García AJ; Gallego L; Gomez S Bone; 2012 Jan; 50(1):245-54. PubMed ID: 22071000 [TBL] [Abstract][Full Text] [Related]
23. In situ synchrotron radiation µCT indentation of cortical bone: Anisotropic crack propagation, local deformation, and fracture. Peña Fernández M; Schwiedrzik J; Bürki A; Peyrin F; Michler J; Zysset PK; Wolfram U Acta Biomater; 2023 Sep; 167():83-99. PubMed ID: 37127075 [TBL] [Abstract][Full Text] [Related]
24. Element concentrations and element ratios in antler and pedicle bone of yearling red deer (Cervus elaphus) stags-a quantitative X-ray fluorescence study. Kierdorf U; Stoffels D; Kierdorf H Biol Trace Elem Res; 2014 Dec; 162(1-3):124-33. PubMed ID: 25319008 [TBL] [Abstract][Full Text] [Related]
25. Influence of physiological effort of growth and chemical composition on antler bone mechanical properties. Landete-Castillejos T; Currey JD; Estevez JA; Gaspar-López E; Garcia A; Gallego L Bone; 2007 Nov; 41(5):794-803. PubMed ID: 17822969 [TBL] [Abstract][Full Text] [Related]
26. Nanointerfacial strength between non-collagenous protein and collagen fibrils in antler bone. Hang F; Gupta HS; Barber AH J R Soc Interface; 2014 Mar; 11(92):20130993. PubMed ID: 24352676 [TBL] [Abstract][Full Text] [Related]
27. Structure and mineralisation density of antler and pedicle bone in red deer (Cervus elaphus L.) exposed to different levels of environmental fluoride: a quantitative backscattered electron imaging study. Kierdorf U; Kierdorf H; Boyde A J Anat; 2000 Jan; 196 ( Pt 1)(Pt 1):71-83. PubMed ID: 10697290 [TBL] [Abstract][Full Text] [Related]
28. Water promotes the formation of fibril bridging in antler bone illuminated by in situ AFM testing. Chen X; Qian T; Hang F; Chen X J Mech Behav Biomed Mater; 2021 Aug; 120():104580. PubMed ID: 34015573 [TBL] [Abstract][Full Text] [Related]
29. Red deer bone and antler collagen are not isotopically equivalent in carbon and nitrogen. Stevens RE; O'Connell TC Rapid Commun Mass Spectrom; 2016 Sep; 30(17):1969-84. PubMed ID: 27501431 [TBL] [Abstract][Full Text] [Related]
30. Intrafibrillar plasticity through mineral/collagen sliding is the dominant mechanism for the extreme toughness of antler bone. Gupta HS; Krauss S; Kerschnitzki M; Karunaratne A; Dunlop JW; Barber AH; Boesecke P; Funari SS; Fratzl P J Mech Behav Biomed Mater; 2013 Dec; 28():366-82. PubMed ID: 23707600 [TBL] [Abstract][Full Text] [Related]
31. Strain rate dependence of work of fracture tests on bone and similar tissues: Reflections on testing methods and mineral content effects. Currey JD; Brear K; Zioupos P Bone; 2019 Nov; 128():115038. PubMed ID: 31446116 [TBL] [Abstract][Full Text] [Related]
32. Effect of orientation and age on the crack propagation in cortical bone. Rahman N; Ur Rahman W; Khan R Biomed Mater Eng; 2018; 29(5):601-610. PubMed ID: 30400074 [TBL] [Abstract][Full Text] [Related]
33. Organic and mechanical properties of Cervidae antlers: a review. Picavet PP; Balligand M Vet Res Commun; 2016 Dec; 40(3-4):141-147. PubMed ID: 27618827 [TBL] [Abstract][Full Text] [Related]
34. Fracture toughness and fatigue crack propagation rate of short fiber reinforced epoxy composites for analogue cortical bone. Chong AC; Miller F; Buxton M; Friis EA J Biomech Eng; 2007 Aug; 129(4):487-93. PubMed ID: 17655469 [TBL] [Abstract][Full Text] [Related]
35. Numerical investigation of bone remodelling around immediately loaded dental implants using sika deer (Cervus nippon) antlers as implant bed. He Y; Hasan I; Keilig L; Fischer D; Ziegler L; Abboud M; Wahl G; Bourauel C Comput Methods Biomech Biomed Engin; 2018 Mar; 21(4):359-369. PubMed ID: 29658297 [TBL] [Abstract][Full Text] [Related]
36. An interface damage model that captures crack propagation at the microscale in cortical bone using XFEM. Gustafsson A; Khayyeri H; Wallin M; Isaksson H J Mech Behav Biomed Mater; 2019 Feb; 90():556-565. PubMed ID: 30472565 [TBL] [Abstract][Full Text] [Related]
37. Experimental validation of a microcracking-based toughening mechanism for cortical bone. Vashishth D; Tanner KE; Bonfield W J Biomech; 2003 Jan; 36(1):121-4. PubMed ID: 12485646 [TBL] [Abstract][Full Text] [Related]
38. Tubular frameworks guiding orderly bone formation in the antler of the red deer (Cervus elaphus). Krauss S; Wagermaier W; Estevez JA; Currey JD; Fratzl P J Struct Biol; 2011 Sep; 175(3):457-64. PubMed ID: 21704707 [TBL] [Abstract][Full Text] [Related]
39. Anisotropic mode-dependent damage of cortical bone using the extended finite element method (XFEM). Feerick EM; Liu XC; McGarry P J Mech Behav Biomed Mater; 2013 Apr; 20():77-89. PubMed ID: 23455165 [TBL] [Abstract][Full Text] [Related]
40. Quasi-static and dynamic Brazilian testing and failure analysis of a deer antler in the transverse to the osteon growth direction. Tuncer C; Güden M; Orhan M; Sarıkaya MK; Taşdemirci A J Mech Behav Biomed Mater; 2023 Feb; 138():105648. PubMed ID: 36610280 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]