These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 30114670)

  • 1. Maximizing the production of aromatic hydrocarbons from lignin conversion by coupling methane activation.
    Wang A; Song H
    Bioresour Technol; 2018 Nov; 268():505-513. PubMed ID: 30114670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of aromatics from catalytic pyrolysis of yellow poplar: Role of hydrogen and methane decomposition.
    Moogi S; Jae J; Kannapu HPR; Ahmed A; Park ED; Park YK
    Bioresour Technol; 2020 Nov; 315():123835. PubMed ID: 32693345
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A strategy for aromatic hydrocarbon bioremediation under anaerobic conditions and the impacts of ethanol: a microcosm study.
    Chen YD; Barker JF; Gui L
    J Contam Hydrol; 2008 Feb; 96(1-4):17-31. PubMed ID: 17964687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Technical benefits of using methane as a pyrolysis medium for catalytic pyrolysis of Kraft lignin.
    Farooq A; Shiung Lam S; Hoon Rhee G; Lee J; Ali Khan M; Jeon BH; Park YK
    Bioresour Technol; 2022 Jun; 353():127131. PubMed ID: 35398535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. BTEX recovery from waste rubbers by catalytic pyrolysis over Zn loaded tire derived char.
    Pan Y; Sima J; Wang X; Zhou Y; Huang Q
    Waste Manag; 2021 Jul; 131():214-225. PubMed ID: 34167041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic pyrolysis of harmful plastic waste to alleviate environmental impacts.
    Yim H; Valizadeh S; Rhee GH; Jae J; Ali Khan M; Jeon BH; Nam H; Park YK
    Environ Pollut; 2024 Feb; 343():123198. PubMed ID: 38128713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conversion of kraft lignin over hierarchical MFI zeolite.
    Kim SS; Lee HW; Ryoo R; Kim W; Park SH; Jeon JK; Park YK
    J Nanosci Nanotechnol; 2014 Mar; 14(3):2414-8. PubMed ID: 24745240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic pyrolysis of lignin in a cascade dual-catalyst system of modified red mud and HZSM-5 for aromatic hydrocarbon production.
    Wang S; Li Z; Bai X; Yi W; Fu P
    Bioresour Technol; 2019 Apr; 278():66-72. PubMed ID: 30682638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of benzene/toluene/ethyl benzene/xylene (BTEX) via multiphase catalytic pyrolysis of hazardous waste polyethylene using low cost fly ash synthesized natural catalyst.
    Gaurh P; Pramanik H
    Waste Manag; 2018 Jul; 77():114-130. PubMed ID: 30008401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conversion of Methanol to Para-Xylene over ZSM-5 Zeolites Modified by Zinc and Phosphorus.
    Bai Y; Niu X; Du YE; Chen Y
    Molecules; 2023 Jun; 28(13):. PubMed ID: 37446553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic Fast Pyrolysis of Lignin over High-Surface-Area Mesoporous Aluminosilicates: Effect of Porosity and Acidity.
    Custodis VB; Karakoulia SA; Triantafyllidis KS; van Bokhoven JA
    ChemSusChem; 2016 May; 9(10):1134-45. PubMed ID: 27079742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluidised bed catalytic pyrolysis of scrap tyres: influence of catalyst:tyre ratio and catalyst temperature.
    Williams PT; Brindle AJ
    Waste Manag Res; 2002 Dec; 20(6):546-55. PubMed ID: 12549667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic Lignin Depolymerization to Aromatic Chemicals.
    Zhang C; Wang F
    Acc Chem Res; 2020 Feb; 53(2):470-484. PubMed ID: 31999099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of physicochemical properties of metal modified ZSM-5 catalyst on benzene, toluene and xylene production from biomass catalytic pyrolysis.
    Che Q; Yang M; Wang X; Yang Q; Rose Williams L; Yang H; Zou J; Zeng K; Zhu Y; Chen Y; Chen H
    Bioresour Technol; 2019 Apr; 278():248-254. PubMed ID: 30708327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Renewable Aromatics from Tree-Borne Oils over Zeolite Catalysts Promoted by Transition Metals.
    Singh O; Agrawal A; Selvaraj T; Ghosh IK; Vempatapu BP; Viswanathan B; Bal R; Sarkar B
    ACS Appl Mater Interfaces; 2020 Jun; 12(22):24756-24766. PubMed ID: 32393018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly selective hydropyrolysis of lignin waste to benzene, toluene and xylene in presence of zirconia supported iron catalyst.
    Lonchay W; Bagnato G; Sanna A
    Bioresour Technol; 2022 Oct; 361():127727. PubMed ID: 35944864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-step ethanolysis of lignin into small-molecular aromatic hydrocarbons over nano-SiC catalyst.
    Chen Y; Wang F; Jia Y; Yang N; Zhang X
    Bioresour Technol; 2017 Feb; 226():145-149. PubMed ID: 27997868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature effects and substrate interactions during the aerobic biotransformation of BTEX mixtures by toluene-enriched consortia and Rhodococcus rhodochrous.
    Deeb RA; Alvarez-Cohen L
    Biotechnol Bioeng; 1999 Mar; 62(5):526-36. PubMed ID: 10099561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methanol-to-hydrocarbons conversion over MoO
    Liu B; France L; Wu C; Jiang Z; Kuznetsov VL; Al-Megren HA; Al-Kinany M; Aldrees SA; Xiao T; Edwards PP
    Chem Sci; 2015 Sep; 6(9):5152-5163. PubMed ID: 29142734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic lignin valorization process for the production of aromatic chemicals and hydrogen.
    Zakzeski J; Jongerius AL; Bruijnincx PC; Weckhuysen BM
    ChemSusChem; 2012 Aug; 5(8):1602-9. PubMed ID: 22740175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.