BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

928 related articles for article (PubMed ID: 30114965)

  • 1. Structure based virtual screening, 3D-QSAR, molecular dynamics and ADMET studies for selection of natural inhibitors against structural and non-structural targets of Chikungunya.
    Vora J; Patel S; Sinha S; Sharma S; Srivastava A; Chhabria M; Shrivastava N
    J Biomol Struct Dyn; 2019 Aug; 37(12):3150-3161. PubMed ID: 30114965
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Chaudhary M; Sehgal D
    J Biomol Struct Dyn; 2022; 40(22):11560-11570. PubMed ID: 34355667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular docking, QSAR and ADMET based mining of natural compounds against prime targets of HIV.
    Vora J; Patel S; Sinha S; Sharma S; Srivastava A; Chhabria M; Shrivastava N
    J Biomol Struct Dyn; 2019 Jan; 37(1):131-146. PubMed ID: 29268664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pharmacophore modeling, molecular docking and molecular dynamics simulation for screening and identifying anti-dengue phytocompounds.
    Vora J; Patel S; Athar M; Sinha S; Chhabria MT; Jha PC; Shrivastava N
    J Biomol Struct Dyn; 2020 Apr; 38(6):1726-1740. PubMed ID: 31057055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computer-Aided Structure Based Drug Design Approaches for the Discovery of New Anti-CHIKV Agents.
    Jadav SS; Sinha BN; Hilgenfeld R; Jayaprakash V
    Curr Comput Aided Drug Des; 2017 Nov; 13(4):346-361. PubMed ID: 28294048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of Inhibitor Binding Combined with Reactivity Studies to Discover the Potentially Inhibiting Phytochemicals Targeting Chikungunya Viral Replication.
    Rasool N; Bakht A; Hussain W
    Curr Drug Discov Technol; 2021; 18(3):437-450. PubMed ID: 32164512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discovery of Novel Peptidomimetics as Irreversible CHIKV NsP2 Protease Inhibitors Using Quantum Mechanical-Based Ligand Descriptors.
    El-labbad EM; Ismail MA; Abou Ei Ella DA; Ahmed M; Wang F; Barakat KH; Abouzid KA
    Chem Biol Drug Des; 2015 Dec; 86(6):1518-27. PubMed ID: 26212366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro and in vivo studies reveal α-Mangostin, a xanthonoid from Garcinia mangostana, as a promising natural antiviral compound against chikungunya virus.
    Patil P; Agrawal M; Almelkar S; Jeengar MK; More A; Alagarasu K; Kumar NV; Mainkar PS; Parashar D; Cherian S
    Virol J; 2021 Feb; 18(1):47. PubMed ID: 33639977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectral characterisation, antiviral activities, in silico ADMET and molecular docking of the compounds isolated from Tectona grandis to chikungunya virus.
    K S; Purushothaman I; S R
    Biomed Pharmacother; 2017 Mar; 87():302-310. PubMed ID: 28063412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discovery of small molecule inhibitors of chikungunya virus proteins (nsP2 and E1) using
    Khan N; Bhat R; Patel AK; Ray P
    J Biomol Struct Dyn; 2021 Mar; 39(4):1373-1385. PubMed ID: 32072865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antivirals against the Chikungunya Virus.
    Battisti V; Urban E; Langer T
    Viruses; 2021 Jul; 13(7):. PubMed ID: 34372513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of chikungunya virus replication by harringtonine, a novel antiviral that suppresses viral protein expression.
    Kaur P; Thiruchelvan M; Lee RC; Chen H; Chen KC; Ng ML; Chu JJ
    Antimicrob Agents Chemother; 2013 Jan; 57(1):155-67. PubMed ID: 23275491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antagonism of the Sodium-Potassium ATPase Impairs Chikungunya Virus Infection.
    Ashbrook AW; Lentscher AJ; Zamora PF; Silva LA; May NA; Bauer JA; Morrison TE; Dermody TS
    mBio; 2016 May; 7(3):. PubMed ID: 27222471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovery of in silico hits targeting the nsP3 macro domain of chikungunya virus.
    Nguyen PT; Yu H; Keller PA
    J Mol Model; 2014 May; 20(5):2216. PubMed ID: 24756552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Current Strategies for Inhibition of Chikungunya Infection.
    Subudhi BB; Chattopadhyay S; Mishra P; Kumar A
    Viruses; 2018 May; 10(5):. PubMed ID: 29751486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drug repurposing approach against chikungunya virus: an
    Kasabe B; Ahire G; Patil P; Punekar M; Davuluri KS; Kakade M; Alagarasu K; Parashar D; Cherian S
    Front Cell Infect Microbiol; 2023; 13():1132538. PubMed ID: 37180434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In silico and in vitro evaluation of silibinin: a promising anti-Chikungunya agent.
    Dutta SK; Sengupta S; Tripathi A
    In Vitro Cell Dev Biol Anim; 2022 Mar; 58(3):255-267. PubMed ID: 35381943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a theoretical model for the inhibition of nsP3 protease of Chikungunya virus using pyranooxazoles.
    Kumar D; Kumari K; Jayaraj A; Singh P
    J Biomol Struct Dyn; 2020 Jul; 38(10):3018-3034. PubMed ID: 31366291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chikungunya virus drug discovery: still a long way to go?
    Pérez-Pérez MJ; Delang L; Ng LFP; Priego EM
    Expert Opin Drug Discov; 2019 Sep; 14(9):855-866. PubMed ID: 31177861
    [No Abstract]   [Full Text] [Related]  

  • 20. Antivirals against Chikungunya Virus: Is the Solution in Nature?
    Martins DOS; Santos IA; de Oliveira DM; Grosche VR; Jardim ACG
    Viruses; 2020 Feb; 12(3):. PubMed ID: 32121393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 47.