These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
293 related articles for article (PubMed ID: 30115681)
1. Mechanism of dysfunction of human variants of the IRAK4 kinase and a role for its kinase activity in interleukin-1 receptor signaling. De S; Karim F; Kiessu E; Cushing L; Lin LL; Ghandil P; Hoarau C; Casanova JL; Puel A; Rao VR J Biol Chem; 2018 Sep; 293(39):15208-15220. PubMed ID: 30115681 [TBL] [Abstract][Full Text] [Related]
2. Functional assessment of the mutational effects of human IRAK4 and MyD88 genes. Yamamoto T; Tsutsumi N; Tochio H; Ohnishi H; Kubota K; Kato Z; Shirakawa M; Kondo N Mol Immunol; 2014 Mar; 58(1):66-76. PubMed ID: 24316379 [TBL] [Abstract][Full Text] [Related]
3. Interleukin-1 receptor-associated kinase 4 (IRAK4) plays a dual role in myddosome formation and Toll-like receptor signaling. De Nardo D; Balka KR; Cardona Gloria Y; Rao VR; Latz E; Masters SL J Biol Chem; 2018 Sep; 293(39):15195-15207. PubMed ID: 30076215 [TBL] [Abstract][Full Text] [Related]
5. Cloning and functional characterization of IRAK4 in large yellow croaker (Larimichthys crocea) that associates with MyD88 but impairs NF-κB activation. Zou PF; Huang XN; Yao CL; Sun QX; Li Y; Zhu Q; Yu ZX; Fan ZJ Fish Shellfish Immunol; 2017 Apr; 63():452-464. PubMed ID: 27989863 [TBL] [Abstract][Full Text] [Related]
6. The mechanism of activation of IRAK1 and IRAK4 by interleukin-1 and Toll-like receptor agonists. Vollmer S; Strickson S; Zhang T; Gray N; Lee KL; Rao VR; Cohen P Biochem J; 2017 Jun; 474(12):2027-2038. PubMed ID: 28512203 [TBL] [Abstract][Full Text] [Related]
7. Interleukin 1/Toll-like receptor-induced autophosphorylation activates interleukin 1 receptor-associated kinase 4 and controls cytokine induction in a cell type-specific manner. Cushing L; Stochaj W; Siegel M; Czerwinski R; Dower K; Wright Q; Hirschfield M; Casanova JL; Picard C; Puel A; Lin LL; Rao VR J Biol Chem; 2014 Apr; 289(15):10865-10875. PubMed ID: 24567333 [TBL] [Abstract][Full Text] [Related]
13. Identification of critical residues of the MyD88 death domain involved in the recruitment of downstream kinases. Loiarro M; Gallo G; Fantò N; De Santis R; Carminati P; Ruggiero V; Sette C J Biol Chem; 2009 Oct; 284(41):28093-28103. PubMed ID: 19679662 [TBL] [Abstract][Full Text] [Related]
14. IRAK4 in TLR/IL-1R signaling: possible clinical applications. Li X Eur J Immunol; 2008 Mar; 38(3):614-8. PubMed ID: 18286571 [TBL] [Abstract][Full Text] [Related]
15. Two human MYD88 variants, S34Y and R98C, interfere with MyD88-IRAK4-myddosome assembly. George J; Motshwene PG; Wang H; Kubarenko AV; Rautanen A; Mills TC; Hill AV; Gay NJ; Weber AN J Biol Chem; 2011 Jan; 286(2):1341-53. PubMed ID: 20966070 [TBL] [Abstract][Full Text] [Related]
16. Identification of optineurin as an interleukin-1 receptor-associated kinase 1-binding protein and its role in regulation of MyD88-dependent signaling. Tanishima M; Takashima S; Honda A; Yasuda D; Tanikawa T; Ishii S; MaruYama T J Biol Chem; 2017 Oct; 292(42):17250-17257. PubMed ID: 28882891 [TBL] [Abstract][Full Text] [Related]
17. Clinical IRAK4 deficiency caused by homozygosity for the novel Jia A; James E; Lu HY; Sharma M; Modi BP; Biggs CM; Hildebrand KJ; Chomyn A; Erdle S; Kular H; Turvey SE Cold Spring Harb Mol Case Stud; 2020 Jun; 6(3):. PubMed ID: 32532880 [TBL] [Abstract][Full Text] [Related]
19. Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling. Lin SC; Lo YC; Wu H Nature; 2010 Jun; 465(7300):885-90. PubMed ID: 20485341 [TBL] [Abstract][Full Text] [Related]
20. Crystal structure of human IRAK1. Wang L; Qiao Q; Ferrao R; Shen C; Hatcher JM; Buhrlage SJ; Gray NS; Wu H Proc Natl Acad Sci U S A; 2017 Dec; 114(51):13507-13512. PubMed ID: 29208712 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]