These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
43. Renaissance of gas chromatography-time-of-flight mass spectrometry. Meeting the challenge of capillary columns with a beam deflection instrument and time array detection. Watson JT; Schultz GA; Tecklenburg RE; Allison J J Chromatogr; 1990 Oct; 518(2):283-95. PubMed ID: 2254386 [TBL] [Abstract][Full Text] [Related]
44. High Dynamic Range Nanowire Resonators. Molina J; Escobar JE; Ramos D; Gil-Santos E; Ruz JJ; Tamayo J; San Paulo Á; Calleja M Nano Lett; 2021 Aug; 21(15):6617-6624. PubMed ID: 34288677 [TBL] [Abstract][Full Text] [Related]
45. High-frequency nanofluidics: an experimental study using nanomechanical resonators. Karabacak DM; Yakhot V; Ekinci KL Phys Rev Lett; 2007 Jun; 98(25):254505. PubMed ID: 17678031 [TBL] [Abstract][Full Text] [Related]
46. Model-independent quantitative measurement of nanomechanical oscillator vibrations using electron-microscope linescans. Wang H; Fenton JC; Chiatti O; Warburton PA Rev Sci Instrum; 2013 Jul; 84(7):075002. PubMed ID: 23902094 [TBL] [Abstract][Full Text] [Related]
47. Nonlinear dynamics of nanomechanical beam resonators: improving the performance of NEMS-based sensors. Kacem N; Hentz S; Pinto D; Reig B; Nguyen V Nanotechnology; 2009 Jul; 20(27):275501. PubMed ID: 19528678 [TBL] [Abstract][Full Text] [Related]
48. Ultra-sensitive analysis of a cantilevered single-walled carbon nanocone-based mass detector. Yan JW; Liew KM; He LH Nanotechnology; 2013 Mar; 24(12):125703. PubMed ID: 23459263 [TBL] [Abstract][Full Text] [Related]
49. Nanomechanical mass sensing and stiffness spectrometry based on two-dimensional vibrations of resonant nanowires. Gil-Santos E; Ramos D; Martínez J; Fernández-Regúlez M; García R; San Paulo A; Calleja M; Tamayo J Nat Nanotechnol; 2010 Sep; 5(9):641-5. PubMed ID: 20693990 [TBL] [Abstract][Full Text] [Related]
51. Dispersive and dissipative coupling in a micromechanical resonator embedded with a nanomechanical resonator. Mahboob I; Perrissin N; Nishiguchi K; Hatanaka D; Okazaki Y; Fujiwara A; Yamaguchi H Nano Lett; 2015 Apr; 15(4):2312-7. PubMed ID: 25751406 [TBL] [Abstract][Full Text] [Related]
52. Screening of synthetic PDE-5 inhibitors and their analogues as adulterants: analytical techniques and challenges. Patel DN; Li L; Kee CL; Ge X; Low MY; Koh HL J Pharm Biomed Anal; 2014 Jan; 87():176-90. PubMed ID: 23721687 [TBL] [Abstract][Full Text] [Related]
53. Quasi-dynamic mode of nanomembranes for time-of-flight mass spectrometry of proteins. Park J; Kim H; Blick RH Nanoscale; 2012 Apr; 4(8):2543-8. PubMed ID: 22378023 [TBL] [Abstract][Full Text] [Related]
54. Finite size effect on nanomechanical mass detection: the role of surface elasticity. Dai MD; Kim CW; Eom K Nanotechnology; 2011 Jul; 22(26):265502. PubMed ID: 21576803 [TBL] [Abstract][Full Text] [Related]
55. Signatures for a classical to quantum transition of a driven nonlinear nanomechanical resonator. Katz I; Retzker A; Straub R; Lifshitz R Phys Rev Lett; 2007 Jul; 99(4):040404. PubMed ID: 17678342 [TBL] [Abstract][Full Text] [Related]
56. Mass and stiffness spectrometry of nanoparticles and whole intact bacteria by multimode nanomechanical resonators. Malvar O; Ruz JJ; Kosaka PM; Domínguez CM; Gil-Santos E; Calleja M; Tamayo J Nat Commun; 2016 Nov; 7():13452. PubMed ID: 27834379 [TBL] [Abstract][Full Text] [Related]
57. Carbon nanofiber high frequency nanomechanical resonators. Lee J; Kaul AB; Feng PX Nanoscale; 2017 Aug; 9(33):11864-11870. PubMed ID: 28805881 [TBL] [Abstract][Full Text] [Related]
58. Accurate Mass Measurement of a Levitated Nanomechanical Resonator for Precision Force-Sensing. Ricci F; Cuairan MT; Conangla GP; Schell AW; Quidant R Nano Lett; 2019 Oct; 19(10):6711-6715. PubMed ID: 30888180 [TBL] [Abstract][Full Text] [Related]