These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 30116188)

  • 1. Development of a Parent Wireless Assistive Interface for Myoelectric Prosthetic Hands for Children.
    Hiyoshi Y; Murai Y; Yabuki Y; Takahana K; Morishita S; Jiang Y; Togo S; Takayama S; Yokoi H
    Front Neurorobot; 2018; 12():48. PubMed ID: 30116188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel postural control algorithm for control of multifunctional myoelectric prosthetic hands.
    Segil JL; Weir RF
    J Rehabil Res Dev; 2015; 52(4):449-66. PubMed ID: 26348320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Myoelectric control of prosthetic hands: state-of-the-art review.
    Geethanjali P
    Med Devices (Auckl); 2016; 9():247-55. PubMed ID: 27555799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human-Machine Interface for the Control of Multi-Function Systems Based on Electrocutaneous Menu: Application to Multi-Grasp Prosthetic Hands.
    Gonzalez-Vargas J; Dosen S; Amsuess S; Yu W; Farina D
    PLoS One; 2015; 10(6):e0127528. PubMed ID: 26069961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Motor unit drive: a neural interface for real-time upper limb prosthetic control.
    Twardowski MD; Roy SH; Li Z; Contessa P; De Luca G; Kline JC
    J Neural Eng; 2019 Feb; 16(1):016012. PubMed ID: 30524105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of multi-grip myoelectric prosthetic hands on daily activities, pain-related disability and prosthesis use compared with single-grip myoelectric prostheses: A single-case study.
    Widehammar C; Hiyoshi A; Lidström Holmqvist K; Lindner H; Hermansson L
    J Rehabil Med; 2022 Jan; 54():jrm00245. PubMed ID: 34766184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A myoelectric prosthetic hand with muscle synergy-based motion determination and impedance model-based biomimetic control.
    Furui A; Eto S; Nakagaki K; Shimada K; Nakamura G; Masuda A; Chin T; Tsuji T
    Sci Robot; 2019 Jun; 4(31):. PubMed ID: 33137769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Alternative Myoelectric Pattern Recognition Approach for the Control of Hand Prostheses: A Case Study of Use in Daily Life by a Dysmelia Subject.
    Mastinu E; Ahlberg J; Lendaro E; Hermansson L; Hakansson B; Ortiz-Catalan M
    IEEE J Transl Eng Health Med; 2018; 6():2600112. PubMed ID: 29637030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of EMG pattern recognition for upper limb prosthesis control: a case study in comparison with direct myoelectric control.
    Resnik L; Huang HH; Winslow A; Crouch DL; Zhang F; Wolk N
    J Neuroeng Rehabil; 2018 Mar; 15(1):23. PubMed ID: 29544501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative study of state-of-the-art myoelectric controllers for multigrasp prosthetic hands.
    Segil JL; Controzzi M; Weir RF; Cipriani C
    J Rehabil Res Dev; 2014; 51(9):1439-54. PubMed ID: 25803683
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PCA and deep learning based myoelectric grasping control of a prosthetic hand.
    Li C; Ren J; Huang H; Wang B; Zhu Y; Hu H
    Biomed Eng Online; 2018 Aug; 17(1):107. PubMed ID: 30081927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Prosthetic Hand Body Area Controller Based on Efficient Pattern Recognition Control Strategies.
    Benatti S; Milosevic B; Farella E; Gruppioni E; Benini L
    Sensors (Basel); 2017 Apr; 17(4):. PubMed ID: 28420135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep learning-based artificial vision for grasp classification in myoelectric hands.
    Ghazaei G; Alameer A; Degenaar P; Morgan G; Nazarpour K
    J Neural Eng; 2017 Jun; 14(3):036025. PubMed ID: 28467317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-term results of early myoelectric prosthesis fittings: A prospective case-control study.
    Sjöberg L; Lindner H; Hermansson L
    Prosthet Orthot Int; 2018 Oct; 42(5):527-533. PubMed ID: 28905686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interface Prostheses With Classifier-Feedback-Based User Training.
    Fang Y; Zhou D; Li K; Liu H
    IEEE Trans Biomed Eng; 2017 Nov; 64(11):2575-2583. PubMed ID: 28026744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clinical outcomes of a low-cost single-channel myoelectric-interface three-dimensional hand prosthesis.
    Ku I; Lee GK; Park CY; Lee J; Jeong E
    Arch Plast Surg; 2019 Jul; 46(4):303-310. PubMed ID: 31336417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved prosthetic hand control with concurrent use of myoelectric and inertial measurements.
    Krasoulis A; Kyranou I; Erden MS; Nazarpour K; Vijayakumar S
    J Neuroeng Rehabil; 2017 Jul; 14(1):71. PubMed ID: 28697795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Initial Clinical Evaluation of the Modular Prosthetic Limb.
    Perry BN; Moran CW; Armiger RS; Pasquina PF; Vandersea JW; Tsao JW
    Front Neurol; 2018; 9():153. PubMed ID: 29615956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of Muscle Synergies in Real-Time Classification of Upper Limb Motions using Extreme Learning Machines.
    Antuvan CW; Bisio F; Marini F; Yen SC; Cambria E; Masia L
    J Neuroeng Rehabil; 2016 Aug; 13(1):76. PubMed ID: 27527511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensor fusion and computer vision for context-aware control of a multi degree-of-freedom prosthesis.
    Markovic M; Dosen S; Popovic D; Graimann B; Farina D
    J Neural Eng; 2015 Dec; 12(6):066022. PubMed ID: 26529274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.