These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 30116293)

  • 1. Design on the Bowden Cable-Driven Upper Limb Soft Exoskeleton.
    Wei W; Qu Z; Wang W; Zhang P; Hao F
    Appl Bionics Biomech; 2018; 2018():1925694. PubMed ID: 30116293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Force Transmission Analysis and Optimization of Bowden Cable on Body in a Flexible Exoskeleton.
    Li X; Liu J; Li W; Huang Y; Zhan G
    Appl Bionics Biomech; 2022; 2022():5552166. PubMed ID: 35937097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of shoulder muscle and joint function using a powered upper-limb exoskeleton.
    Wu W; Fong J; Crocher V; Lee PVS; Oetomo D; Tan Y; Ackland DC
    J Biomech; 2018 Apr; 72():7-16. PubMed ID: 29506759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical Design and Kinematic Modeling of a Cable-Driven Arm Exoskeleton Incorporating Inaccurate Human Limb Anthropomorphic Parameters.
    Chen W; Li Z; Cui X; Zhang J; Bai S
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31618848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards Human-like Walking with Biomechanical and Neuromuscular Control Features: Personalized Attachment Point Optimization Method of Cable-Driven Exoskeleton.
    Chen Y; Yu W; Benali A; Lu D; Kok SY; Wang R
    Front Aging Neurosci; 2024; 16():1327397. PubMed ID: 38371400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pilot Study of a Powered Exoskeleton for Upper Limb Rehabilitation Based on the Wheelchair.
    Meng Q; Xie Q; Shao H; Cao W; Wang F; Wang L; Yu H; Li S
    Biomed Res Int; 2019; 2019():9627438. PubMed ID: 31976331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic Walking Energy Harvester Design for a Wearable Bowden Cable-Actuated Exoskeleton Robot.
    Shi Y; Guo M; Zhong H; Ji X; Xia D; Luo X; Yang Y
    Micromachines (Basel); 2022 Apr; 13(4):. PubMed ID: 35457876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A passively safe cable driven upper limb rehabilitation exoskeleton.
    Chen Y; Fan J; Zhu Y; Zhao J; Cai H
    Technol Health Care; 2015; 23 Suppl 2():S197-202. PubMed ID: 26410484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human movement training with a cable driven ARm EXoskeleton (CAREX).
    Mao Y; Jin X; Gera Dutta G; Scholz JP; Agrawal SK
    IEEE Trans Neural Syst Rehabil Eng; 2015 Jan; 23(1):84-92. PubMed ID: 24919202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Cable-Driven Three-DOF Wrist Rehabilitation Exoskeleton With Improved Performance.
    Shi K; Song A; Li Y; Li H; Chen D; Zhu L
    Front Neurorobot; 2021; 15():664062. PubMed ID: 33897402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton.
    Proietti T; Guigon E; Roby-Brami A; Jarrassé N
    J Neuroeng Rehabil; 2017 Jun; 14(1):55. PubMed ID: 28606179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Learning-Based Repetitive Control of a Bowden-Cable-Actuated Exoskeleton with Frictional Hysteresis.
    Shi Y; Guo M; Hui C; Li S; Ji X; Yang Y; Luo X; Xia D
    Micromachines (Basel); 2022 Oct; 13(10):. PubMed ID: 36296027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study on the Control Method of Knee Joint Human-Exoskeleton Interactive System.
    Wang Z; Yang C; Ding Z; Yang T; Guo H; Jiang F; Tian B
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Mechanically Passive, Wearable Shoulder Exoskeletons on Muscle Output During Dynamic Upper Extremity Movements: A Computational Simulation Study.
    Nelson AJ; Hall PT; Saul KR; Crouch DL
    J Appl Biomech; 2020 Apr; 36(2):59-67. PubMed ID: 31968306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinematic Synergy of Multi-DoF Movement in Upper Limb and Its Application for Rehabilitation Exoskeleton Motion Planning.
    Tang S; Chen L; Barsotti M; Hu L; Li Y; Wu X; Bai L; Frisoli A; Hou W
    Front Neurorobot; 2019; 13():99. PubMed ID: 31849635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinematic design to improve ergonomics in human machine interaction.
    Schiele A; van der Helm FC
    IEEE Trans Neural Syst Rehabil Eng; 2006 Dec; 14(4):456-69. PubMed ID: 17190037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling and Control of a Cable-Driven Rotary Series Elastic Actuator for an Upper Limb Rehabilitation Robot.
    Zhang Q; Sun D; Qian W; Xiao X; Guo Z
    Front Neurorobot; 2020; 14():13. PubMed ID: 32161531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of a wearable cable-driven upper limb exoskeleton based on epicyclic gear trains structure.
    Xiao F; Gao Y; Wang Y; Zhu Y; Zhao J
    Technol Health Care; 2017 Jul; 25(S1):3-11. PubMed ID: 28582886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of elbow-joints misalignment in upper-limb exoskeleton.
    Malosio M; Pedrocchi N; Vicentini F; Tosatti LM
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975393. PubMed ID: 22275597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Framework for Determining the Performance and Requirements of Cable-Driven Mobile Lower Limb Rehabilitation Exoskeletons.
    Prasad R; El-Rich M; Awad MI; Hussain I; Jelinek HF; Huzaifa U; Khalaf K
    Front Bioeng Biotechnol; 2022; 10():920462. PubMed ID: 35795162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.