BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 30117211)

  • 1. Functional divergence of a heterochromatin-binding protein during stickleback speciation.
    Yoshida K; Ishikawa A; Toyoda A; Shigenobu S; Fujiyama A; Kitano J
    Mol Ecol; 2019 Mar; 28(6):1563-1578. PubMed ID: 30117211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The genomic landscape at a late stage of stickleback speciation: High genomic divergence interspersed by small localized regions of introgression.
    Ravinet M; Yoshida K; Shigenobu S; Toyoda A; Fujiyama A; Kitano J
    PLoS Genet; 2018 May; 14(5):e1007358. PubMed ID: 29791436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A role for a neo-sex chromosome in stickleback speciation.
    Kitano J; Ross JA; Mori S; Kume M; Jones FC; Chan YF; Absher DM; Grimwood J; Schmutz J; Myers RM; Kingsley DM; Peichel CL
    Nature; 2009 Oct; 461(7267):1079-83. PubMed ID: 19783981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selfish X chromosomes and speciation.
    Patten MM
    Mol Ecol; 2018 Oct; 27(19):3772-3782. PubMed ID: 29281152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sex chromosome turnover contributes to genomic divergence between incipient stickleback species.
    Yoshida K; Makino T; Yamaguchi K; Shigenobu S; Hasebe M; Kawata M; Kume M; Mori S; Peichel CL; Toyoda A; Fujiyama A; Kitano J
    PLoS Genet; 2014 Mar; 10(3):e1004223. PubMed ID: 24625862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative analysis of Japanese three-spined stickleback clades reveals the Pacific Ocean lineage has adapted to freshwater environments while the Japan Sea has not.
    Ravinet M; Takeuchi N; Kume M; Mori S; Kitano J
    PLoS One; 2014; 9(12):e112404. PubMed ID: 25460163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Speciation in ninespine stickleback: reproductive isolation and phenotypic divergence among cryptic species of Japanese ninespine stickleback.
    Ishikawa A; Takeuchi N; Kusakabe M; Kume M; Mori S; Takahashi H; Kitano J
    J Evol Biol; 2013 Jul; 26(7):1417-30. PubMed ID: 23663028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A test of hybrid growth disadvantage in wild, free-ranging species pairs of threespine stickleback (Gasterosteus aculeatus) and its implications for ecological speciation.
    Taylor EB; Gerlinsky C; Farrell N; Gow JL
    Evolution; 2012 Jan; 66(1):240-51. PubMed ID: 22220878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene flow mediates the role of sex chromosome meiotic drive during complex speciation.
    Meiklejohn CD; Landeen EL; Gordon KE; Rzatkiewicz T; Kingan SB; Geneva AJ; Vedanayagam JP; Muirhead CA; Garrigan D; Stern DL; Presgraves DC
    Elife; 2018 Dec; 7():. PubMed ID: 30543325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ecological divergence and habitat isolation between two migratory forms of Japanese threespine stickleback (Gasterosteus aculeatus).
    Kume M; Kitano J; Mori S; Shibuya T
    J Evol Biol; 2010 Jul; 23(7):1436-46. PubMed ID: 20456572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A single gene causes both male sterility and segregation distortion in Drosophila hybrids.
    Phadnis N; Orr HA
    Science; 2009 Jan; 323(5912):376-9. PubMed ID: 19074311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Patterns of genomic divergence and introgression between Japanese stickleback species with overlapping breeding habitats.
    Ravinet M; Kume M; Ishikawa A; Kitano J
    J Evol Biol; 2021 Jan; 34(1):114-127. PubMed ID: 32557887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sex ratio meiotic drive as a plausible evolutionary mechanism for hybrid male sterility.
    Zhang L; Sun T; Woldesellassie F; Xiao H; Tao Y
    PLoS Genet; 2015 Mar; 11(3):e1005073. PubMed ID: 25822261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward conservation of genetic and phenotypic diversity in Japanese sticklebacks.
    Kitano J; Mori S
    Genes Genet Syst; 2016 Oct; 91(2):77-84. PubMed ID: 27301281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contemporary ancestor? Adaptive divergence from standing genetic variation in Pacific marine threespine stickleback.
    Morris MRJ; Bowles E; Allen BE; Jamniczky HA; Rogers SM
    BMC Evol Biol; 2018 Jul; 18(1):113. PubMed ID: 30021523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Misregulation of Gene Expression and Sterility in Interspecies Hybrids: Causal Links and Alternative Hypotheses.
    Civetta A
    J Mol Evol; 2016 May; 82(4-5):176-82. PubMed ID: 27025762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of a male meiosis-specific gene, Tcte2, which is differentially spliced in species that form sterile hybrids with laboratory mice and deleted in t chromosomes showing meiotic drive.
    Braidotti G; Barlow DP
    Dev Biol; 1997 Jun; 186(1):85-99. PubMed ID: 9188755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A genomic approach to identify hybrid incompatibility genes.
    Cooper JC; Phadnis N
    Fly (Austin); 2016 Jul; 10(3):142-8. PubMed ID: 27230814
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulatory divergence of X-linked genes and hybrid male sterility in mice.
    Oka A; Shiroishi T
    Genes Genet Syst; 2014; 89(3):99-108. PubMed ID: 25475933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid neo-sex chromosome evolution and incipient speciation in a major forest pest.
    Bracewell RR; Bentz BJ; Sullivan BT; Good JM
    Nat Commun; 2017 Nov; 8(1):1593. PubMed ID: 29150608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.