These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 30117276)

  • 41. Homology of melanoma-inducing loci in the genus Xiphophorus.
    Schartl M
    Genetics; 1990 Dec; 126(4):1083-91. PubMed ID: 1981761
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Meningioma progression in mice triggered by Nf2 and Cdkn2ab inactivation.
    Peyre M; Stemmer-Rachamimov A; Clermont-Taranchon E; Quentin S; El-Taraya N; Walczak C; Volk A; Niwa-Kawakita M; Karboul N; Giovannini M; Kalamarides M
    Oncogene; 2013 Sep; 32(36):4264-72. PubMed ID: 23045274
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dual inactivation of RB and p53 pathways in RAS-induced melanomas.
    Bardeesy N; Bastian BC; Hezel A; Pinkel D; DePinho RA; Chin L
    Mol Cell Biol; 2001 Mar; 21(6):2144-53. PubMed ID: 11238948
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Tumor induction and tumor regression in Xiphophorus.
    Schartl A; Schartl M
    In Vivo; 1996; 10(2):179-84. PubMed ID: 8744798
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Melanoma loss-of-function mutants in Xiphophorus caused by Xmrk-oncogene deletion and gene disruption by a transposable element.
    Schartl M; Hornung U; Gutbrod H; Volff JN; Wittbrodt J
    Genetics; 1999 Nov; 153(3):1385-94. PubMed ID: 10545466
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Induction of nevi and skin tumors in Ink4a/Arf Xpa knockout mice by neonatal, intermittent, or chronic UVB exposures.
    van Schanke A; van Venrooij GM; Jongsma MJ; Banus HA; Mullenders LH; van Kranen HJ; de Gruijl FR
    Cancer Res; 2006 Mar; 66(5):2608-15. PubMed ID: 16510579
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evolutionary origin and molecular biology of the melanoma-inducing oncogene of Xiphophorus.
    Schartl A; Dimitrijevic N; Schartl M
    Pigment Cell Res; 1994 Dec; 7(6):428-32. PubMed ID: 7761351
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Strain difference in transgene-induced tumorigenesis and suppressive effect of ionizing radiation.
    Dutta B; Asami T; Imatomi T; Igarashi K; Nagata K; Watanabe-Asaka T; Yasuda T; Oda S; Shartl M; Mitani H
    J Radiat Res; 2021 Jan; 62(1):12-24. PubMed ID: 33231252
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Signalling by the oncogenic receptor tyrosine kinase Xmrk leads to activation of STAT5 in Xiphophorus melanoma.
    Wellbrock C; Geissinger E; Gómez A; Fischer P; Friedrich K; Schartl M
    Oncogene; 1998 Jun; 16(23):3047-56. PubMed ID: 9662338
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Oncogene-induced senescence does not require the p16(INK4a) or p14ARF melanoma tumor suppressors.
    Haferkamp S; Scurr LL; Becker TM; Frausto M; Kefford RF; Rizos H
    J Invest Dermatol; 2009 Aug; 129(8):1983-91. PubMed ID: 19212341
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Histopathologic features of melanocytic tumors in
    Sugiyama A; Schartl M; Naruse K
    J Toxicol Pathol; 2019 Apr; 32(2):111-117. PubMed ID: 31092978
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Suppression of genetic melanoma in the fish Xiphophorus.
    Schwab M
    Ciba Found Symp; 1989; 142():181-97; discussion 197-8. PubMed ID: 2743831
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The INK4a/ARF locus and melanoma.
    Sharpless E; Chin L
    Oncogene; 2003 May; 22(20):3092-8. PubMed ID: 12789286
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ink4a/arf deficiency promotes ultraviolet radiation-induced melanomagenesis.
    Recio JA; Noonan FP; Takayama H; Anver MR; Duray P; Rush WL; Lindner G; De Fabo EC; DePinho RA; Merlino G
    Cancer Res; 2002 Nov; 62(22):6724-30. PubMed ID: 12438273
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Activation of a cAMP pathway and induction of melanogenesis correlate with association of p16(INK4) and p27(KIP1) to CDKs, loss of E2F-binding activity, and premature senescence of human melanocytes.
    Haddad MM; Xu W; Schwahn DJ; Liao F; Medrano EE
    Exp Cell Res; 1999 Dec; 253(2):561-72. PubMed ID: 10585280
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Expression of the tumor suppressor gene product p16INK4 in benign and malignant melanocytic lesions.
    Keller-Melchior R; Schmidt R; Piepkorn M
    J Invest Dermatol; 1998 Jun; 110(6):932-8. PubMed ID: 9620301
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Tbx2 is overexpressed and plays an important role in maintaining proliferation and suppression of senescence in melanomas.
    Vance KW; Carreira S; Brosch G; Goding CR
    Cancer Res; 2005 Mar; 65(6):2260-8. PubMed ID: 15781639
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Genetic status of cell cycle regulators in squamous cell carcinoma of the oesophagus: the CDKN2A (p16(INK4a) and p14(ARF) ) and p53 genes are major targets for inactivation.
    Smeds J; Berggren P; Ma X; Xu Z; Hemminki K; Kumar R
    Carcinogenesis; 2002 Apr; 23(4):645-55. PubMed ID: 11960918
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Evolution of signal transduction by gene and genome duplication in fish.
    Volff JN; Schartl M
    J Struct Funct Genomics; 2003; 3(1-4):139-50. PubMed ID: 12836693
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Signal transduction by the oncogenic receptor tyrosine kinase Xmrk in melanoma formation of Xiphophorus.
    Wellbrock C; Gómez A; Schartl M
    Pigment Cell Res; 1997; 10(1-2):34-40. PubMed ID: 9170160
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.