These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 30117276)
61. Association between the melanoma-inducing receptor tyrosine kinase Xmrk and src family tyrosine kinases in Xiphophorus. Wellbrock C; Lammers R; Ullrich A; Schartl M Oncogene; 1995 Jun; 10(11):2135-43. PubMed ID: 7540277 [TBL] [Abstract][Full Text] [Related]
62. Cloning of the dmrt1 gene of Xiphophorus maculatus: dmY/dmrt1Y is not the master sex-determining gene in the platyfish. Veith AM; Froschauer A; Körting C; Nanda I; Hanel R; Schmid M; Schartl M; Volff JN Gene; 2003 Oct; 317(1-2):59-66. PubMed ID: 14604792 [TBL] [Abstract][Full Text] [Related]
63. The Xmrk receptor tyrosine kinase is activated in Xiphophorus malignant melanoma. Wittbrodt J; Lammers R; Malitschek B; Ullrich A; Schartl M EMBO J; 1992 Nov; 11(11):4239-46. PubMed ID: 1327761 [TBL] [Abstract][Full Text] [Related]
64. The oncogenic epidermal growth factor receptor variant Xiphophorus melanoma receptor kinase induces motility in melanocytes by modulation of focal adhesions. Meierjohann S; Wende E; Kraiss A; Wellbrock C; Schartl M Cancer Res; 2006 Mar; 66(6):3145-52. PubMed ID: 16540665 [TBL] [Abstract][Full Text] [Related]
65. Germ cell and tumor associated piRNAs in the medaka and Xiphophorus melanoma models. Kneitz S; Mishra RR; Chalopin D; Postlethwait J; Warren WC; Walter RB; Schartl M BMC Genomics; 2016 May; 17():357. PubMed ID: 27183847 [TBL] [Abstract][Full Text] [Related]
66. Evolution of a genetic incompatibility in the genus Xiphophorus. Scarpino SV; Hunt PJ; Garcia-De-Leon FJ; Juenger TE; Schartl M; Kirkpatrick M Mol Biol Evol; 2013 Oct; 30(10):2302-10. PubMed ID: 23894140 [TBL] [Abstract][Full Text] [Related]
67. Molecular cloning, structural characterization, and analysis of transcription of the melanoma oncogene of xiphophorus. Schartl M; Adam D Pigment Cell Res; 1992; Suppl 2():173-80. PubMed ID: 1329071 [No Abstract] [Full Text] [Related]
68. Spontaneous melanoma formation in nonhybrid Xiphophorus. Schartl A; Malitschek B; Kazianis S; Borowsky R; Schartl M Cancer Res; 1995 Jan; 55(1):159-65. PubMed ID: 7805027 [TBL] [Abstract][Full Text] [Related]
70. Differential expression of the cyclin-dependent kinase inhibitors p16 and p21 in the human melanocytic system. Wang Y; Becker D Oncogene; 1996 Mar; 12(5):1069-75. PubMed ID: 8649798 [TBL] [Abstract][Full Text] [Related]
71. Receptor tyrosine kinase Xmrk mediates proliferation in Xiphophorus melanoma cells. Wellbrock C; Fischer P; Schartl M Int J Cancer; 1998 May; 76(3):437-42. PubMed ID: 9579584 [TBL] [Abstract][Full Text] [Related]
72. Oncogenic allelic interaction in Lu Y; Sandoval A; Voss S; Lai Z; Kneitz S; Boswell W; Boswell M; Savage M; Walter C; Warren W; Schartl M; Walter R Proc Natl Acad Sci U S A; 2020 Nov; 117(47):29786-29794. PubMed ID: 33168740 [TBL] [Abstract][Full Text] [Related]
73. PI3-kinase is involved in mitogenic signaling by the oncogenic receptor tyrosine kinase Xiphophorus melanoma receptor kinase in fish melanoma. Wellbrock C; Fischer P; Schartl M Exp Cell Res; 1999 Sep; 251(2):340-9. PubMed ID: 10471319 [TBL] [Abstract][Full Text] [Related]
74. Comparison of Xiphophorus and human melanoma transcriptomes reveals conserved pathway interactions. Lu Y; Boswell M; Boswell W; Kneitz S; Hausmann M; Klotz B; Regneri J; Savage M; Amores A; Postlethwait J; Warren W; Schartl M; Walter R Pigment Cell Melanoma Res; 2018 Jul; 31(4):496-508. PubMed ID: 29316274 [TBL] [Abstract][Full Text] [Related]
75. Expression and localization of mutant p16 proteins in melanocytic lesions from familial melanoma patients. Ghiorzo P; Villaggio B; Sementa AR; Hansson J; Platz A; Nicoló G; Spina B; Canepa M; Palmer JM; Hayward NK; Bianchi-Scarrà G Hum Pathol; 2004 Jan; 35(1):25-33. PubMed ID: 14745721 [TBL] [Abstract][Full Text] [Related]
76. CDKN2A germline splicing mutation affecting both p16(ink4) and p14(arf) RNA processing in a melanoma/neurofibroma kindred. Petronzelli F; Sollima D; Coppola G; Martini-Neri ME; Neri G; Genuardi M Genes Chromosomes Cancer; 2001 Aug; 31(4):398-401. PubMed ID: 11433531 [TBL] [Abstract][Full Text] [Related]
77. Application of the Transcriptional Disease Signature (TDSs) to Screen Melanoma-Effective Compounds in a Small Fish Model. Lu Y; Boswell W; Boswell M; Klotz B; Kneitz S; Regneri J; Savage M; Mendoza C; Postlethwait J; Warren WC; Schartl M; Walter RB Sci Rep; 2019 Jan; 9(1):530. PubMed ID: 30679619 [TBL] [Abstract][Full Text] [Related]
78. Fine-mapping loss of gene architecture at the CDKN2B (p15INK4b), CDKN2A (p14ARF, p16INK4a), and MTAP genes in head and neck squamous cell carcinoma. Worsham MJ; Chen KM; Tiwari N; Pals G; Schouten JP; Sethi S; Benninger MS Arch Otolaryngol Head Neck Surg; 2006 Apr; 132(4):409-15. PubMed ID: 16618910 [TBL] [Abstract][Full Text] [Related]
79. Expression signatures of early-stage and advanced medaka melanomas. Klotz B; Kneitz S; Regensburger M; Hahn L; Dannemann M; Kelso J; Nickel B; Lu Y; Boswell W; Postlethwait J; Warren W; Kunz M; Walter RB; Schartl M Comp Biochem Physiol C Toxicol Pharmacol; 2018 Jun; 208():20-28. PubMed ID: 29162497 [TBL] [Abstract][Full Text] [Related]
80. Restoration of CDKN2A into melanoma cells induces morphologic changes and reduction in growth rate but not anchorage-independent growth reversal. Castellano M; Gabrielli BG; Hussussian CJ; Dracopoli NC; Hayward NK J Invest Dermatol; 1997 Jul; 109(1):61-8. PubMed ID: 9204956 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]