These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 30117506)

  • 1. Stokes and anti-Stokes Raman scattering in mono- and bilayer graphene.
    Cong X; Wu JB; Lin ML; Liu XL; Shi W; Venezuela P; Tan PH
    Nanoscale; 2018 Aug; 10(34):16138-16144. PubMed ID: 30117506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dispersion of electron-phonon resonances in one-layer graphene and its demonstration in micro-Raman scattering.
    Strelchuk VV; Nikolenko AS; Gubanov VO; Biliy MM; Bulavin LA
    J Nanosci Nanotechnol; 2012 Nov; 12(11):8671-5. PubMed ID: 23421263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative study of Raman spectroscopy in graphene and MoS2-type transition metal dichalcogenides.
    Pimenta MA; Del Corro E; Carvalho BR; Fantini C; Malard LM
    Acc Chem Res; 2015 Jan; 48(1):41-7. PubMed ID: 25490518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Resonance-Sensitive Ultralow-Frequency Raman Mode in Twisted Bilayer Graphene.
    Yan S; Huang J; Hao H; Song G; Wang Y; Peng H; Yang T; Zhang J; Tong L
    Nano Lett; 2024 Jul; 24(26):7879-7885. PubMed ID: 38901023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Second-order overtone and combination Raman modes of graphene layers in the range of 1690-2150 cm(-1).
    Cong C; Yu T; Saito R; Dresselhaus GF; Dresselhaus MS
    ACS Nano; 2011 Mar; 5(3):1600-5. PubMed ID: 21344883
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-dimensional analysis of the double-resonant 2D Raman mode in bilayer graphene.
    Herziger F; Calandra M; Gava P; May P; Lazzeri M; Mauri F; Maultzsch J
    Phys Rev Lett; 2014 Oct; 113(18):187401. PubMed ID: 25396395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Infrared Resonance Raman of Bilayer Graphene: Signatures of Massive Fermions and Band Structure on the 2D Peak.
    Graziotto L; Macheda F; Venanzi T; Marchese G; Sotgiu S; Ouaj T; Stellino E; Fasolato C; Postorino P; Metzelaars M; Kögerler P; Beschoten B; Calandra M; Ortolani M; Stampfer C; Mauri F; Baldassarre L
    Nano Lett; 2024 Feb; 24(6):1867-1873. PubMed ID: 38306119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intrinsic line shape of the Raman 2D-mode in freestanding graphene monolayers.
    Berciaud S; Li X; Htoon H; Brus LE; Doorn SK; Heinz TF
    Nano Lett; 2013 Aug; 13(8):3517-23. PubMed ID: 23799800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-Resolved Coherent Anti-Stokes Raman Scattering of Graphene: Dephasing Dynamics of Optical Phonon.
    Koivistoinen J; Myllyperkiö P; Pettersson M
    J Phys Chem Lett; 2017 Sep; 8(17):4108-4112. PubMed ID: 28809496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coherent anti-Stokes Raman spectroscopy of single and multi-layer graphene.
    Virga A; Ferrante C; Batignani G; De Fazio D; Nunn ADG; Ferrari AC; Cerullo G; Scopigno T
    Nat Commun; 2019 Aug; 10(1):3658. PubMed ID: 31413256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical-phonon resonances with saddle-point excitons in twisted-bilayer graphene.
    Jorio A; Kasperczyk M; Clark N; Neu E; Maletinsky P; Vijayaraghavan A; Novotny L
    Nano Lett; 2014 Oct; 14(10):5687-92. PubMed ID: 25198466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strong polarization dependence of double-resonant Raman intensities in graphene.
    Yoon D; Moon H; Son YW; Park BH; Kim JB; Lee Y; Cheong H
    Nano Lett; 2008 Dec; 8(12):4270-4. PubMed ID: 19368002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exciton and phonon dynamics in highly aligned 7-atom wide armchair graphene nanoribbons as seen by time-resolved spontaneous Raman scattering.
    Zhu J; German R; Senkovskiy BV; Haberer D; Fischer FR; Grüneis A; van Loosdrecht PHM
    Nanoscale; 2018 Sep; 10(37):17975-17982. PubMed ID: 30226260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using the G' Raman cross-section to understand the phonon dynamics in bilayer graphene systems.
    Mafra DL; Kong J; Sato K; Saito R; Dresselhaus MS; Araujo PT
    Nano Lett; 2012 Jun; 12(6):2883-7. PubMed ID: 22620978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anomalous K-Point Phonons in Noble Metal/Graphene Heterostructure Activated by Localized Surface Plasmon Resonance.
    Kim UJ; Kim JS; Park N; Lee S; Lee U; Park Y; Seok J; Hwang S; Son H; Lee YH
    ACS Nano; 2018 Dec; 12(12):12733-12740. PubMed ID: 30516949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced double resonance Raman scattering in multilayer graphene with broadband coherent anti-Stokes Raman spectroscopy.
    Dai H; Wang Y; Zhao J; Liu H; Liu Z; Liu D
    Nanoscale; 2024 Jan; 16(3):1247-1253. PubMed ID: 38116609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coherent anti-Stokes Raman scattering of two-phonon complexes in diamond.
    Kuroda T; Zhokhov PA; Watanabe K; Zheltikov AM; Sakoda K
    Opt Express; 2009 Nov; 17(23):20794-9. PubMed ID: 19997312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electronic-resonance-enhanced coherent anti-Stokes Raman scattering of nitric oxide: saturation and Stark effects.
    Chai N; Lucht RP; Kulatilaka WD; Roy S; Gord JR
    J Chem Phys; 2010 Aug; 133(8):084310. PubMed ID: 20815572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coherent anti-Stokes Raman scattering enhancement of thymine adsorbed on graphene oxide.
    Dovbeshko G; Fesenko O; Dementjev A; Karpicz R; Fedorov V; Posudievsky OY
    Nanoscale Res Lett; 2014; 9(1):263. PubMed ID: 24948887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resonance Raman enhancement by the intralayer and interlayer electron-phonon processes in twisted bilayer graphene.
    Moutinho MVO; Eliel GSN; Righi A; Gontijo RN; Paillet M; Michel T; Chiu PW; Venezuela P; Pimenta MA
    Sci Rep; 2021 Aug; 11(1):17206. PubMed ID: 34446790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.