These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 30117506)

  • 41. Coherent phonon dynamics in single-walled carbon nanotubes studied by time-frequency two-dimensional coherent anti-stokes Raman scattering spectroscopy.
    Ikeda K; Uosaki K
    Nano Lett; 2009 Apr; 9(4):1378-81. PubMed ID: 19278210
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Electronic and Optical Properties of Single Wall Carbon Nanotubes.
    Saito R; Nugraha ART; Hasdeo EH; Hung NT; Izumida W
    Top Curr Chem (Cham); 2017 Feb; 375(1):7. PubMed ID: 28032245
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ultrafast Spectral Photoresponse of Bilayer Graphene: Optical Pump-Terahertz Probe Spectroscopy.
    Kar S; Nguyen VL; Mohapatra DR; Lee YH; Sood AK
    ACS Nano; 2018 Feb; 12(2):1785-1792. PubMed ID: 29309138
    [TBL] [Abstract][Full Text] [Related]  

  • 44. High-energy phonon branches of an individual metallic carbon nanotube.
    Maultzsch J; Reich S; Schlecht U; Thomsen C
    Phys Rev Lett; 2003 Aug; 91(8):087402. PubMed ID: 14525277
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Theory of Graphene Raman Scattering.
    Heller EJ; Yang Y; Kocia L; Chen W; Fang S; Borunda M; Kaxiras E
    ACS Nano; 2016 Feb; 10(2):2803-18. PubMed ID: 26799915
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Probing Enhanced Electron-Phonon Coupling in Graphene by Infrared Resonance Raman Spectroscopy.
    Venanzi T; Graziotto L; Macheda F; Sotgiu S; Ouaj T; Stellino E; Fasolato C; Postorino P; Mišeikis V; Metzelaars M; Kögerler P; Beschoten B; Coletti C; Roddaro S; Calandra M; Ortolani M; Stampfer C; Mauri F; Baldassarre L
    Phys Rev Lett; 2023 Jun; 130(25):256901. PubMed ID: 37418733
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cavity Engineering of Photon-Phonon Interactions in Si Nanocavities.
    Agarwal D; Yoo J; Pan A; Agarwal R
    Nano Lett; 2019 Nov; 19(11):7950-7956. PubMed ID: 31658421
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Resonance Raman spectroscopy of twisted interfaces in turbostratic multilayer graphene.
    Mohapatra A; Poudyal S; Ramachandra Rao MS; Jaiswal M
    J Phys Condens Matter; 2024 Feb; 36(20):. PubMed ID: 38346342
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Electrically Switchable Intervalley Excitons with Strong Two-Phonon Scattering in Bilayer WSe
    Altaiary MM; Liu E; Liang CT; Hsiao FC; van Baren J; Taniguchi T; Watanabe K; Gabor NM; Chang YC; Lui CH
    Nano Lett; 2022 Mar; 22(5):1829-1835. PubMed ID: 35201774
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Evaluating Spatially Offset Low-Frequency Anti-Stokes Raman Spectroscopy (SOLFARS) for Detecting Subsurface Composition below an Emissive Layer: A Proof of Principle Study Using a Model Bilayer System.
    Be Rziņš KR; Mapley JI; Gordon KC; Fraser-Miller SJ
    Mol Pharm; 2022 Nov; 19(11):4311-4319. PubMed ID: 36170046
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Measurement of the surface-enhanced coherent anti-Stokes Raman scattering (SECARS) due to the 1574 cm(-1) surface-enhanced Raman scattering (SERS) mode of benzenethiol using low-power (<20 mW) CW diode lasers.
    Aggarwal RL; Farrar LW; Greeneltch NG; Van Duyne RP; Polla DL
    Appl Spectrosc; 2013 Feb; 67(2):132-5. PubMed ID: 23622430
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Intervalley scattering by acoustic phonons in two-dimensional MoS
    Carvalho BR; Wang Y; Mignuzzi S; Roy D; Terrones M; Fantini C; Crespi VH; Malard LM; Pimenta MA
    Nat Commun; 2017 Mar; 8():14670. PubMed ID: 28276472
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Gate-Tunable Resonant Raman Spectroscopy of Bilayer MoS
    Lu X; Utama MIB; Wang X; Xu W; Zhao W; Owen MHS; Xiong Q
    Small; 2017 Sep; 13(35):. PubMed ID: 28639278
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of layer stacking on the combination Raman modes in graphene.
    Rao R; Podila R; Tsuchikawa R; Katoch J; Tishler D; Rao AM; Ishigami M
    ACS Nano; 2011 Mar; 5(3):1594-9. PubMed ID: 21204569
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Emergence of an Out-of-Plane Optical Phonon (ZO) Kohn Anomaly in Quasifreestanding Epitaxial Graphene.
    Politano A; de Juan F; Chiarello G; Fertig HA
    Phys Rev Lett; 2015 Aug; 115(7):075504. PubMed ID: 26317732
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Four-fold Raman enhancement of 2D band in twisted bilayer graphene: evidence for a doubly degenerate Dirac band and quantum interference.
    Wang Y; Su Z; Wu W; Nie S; Lu X; Wang H; McCarty K; Pei SS; Robles-Hernandez F; Hadjiev VG; Bao J
    Nanotechnology; 2014 Aug; 25(33):335201. PubMed ID: 25073903
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Raman spectroscopy of graphene under ultrafast laser excitation.
    Ferrante C; Virga A; Benfatto L; Martinati M; De Fazio D; Sassi U; Fasolato C; Ott AK; Postorino P; Yoon D; Cerullo G; Mauri F; Ferrari AC; Scopigno T
    Nat Commun; 2018 Jan; 9(1):308. PubMed ID: 29358728
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Probing Phonon Dynamics in Individual Single-Walled Carbon Nanotubes.
    Jiang T; Hong H; Liu C; Liu WT; Liu K; Wu S
    Nano Lett; 2018 Apr; 18(4):2590-2594. PubMed ID: 29543467
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Deep-Ultraviolet and Helicity-Dependent Raman Spectroscopy for Carbon Nanotubes and 2D Materials.
    Saito R; Hung NT; Yang T; Huang J; Liu HL; Gulo DP; Han S; Tong L
    Small; 2024 Feb; ():e2308558. PubMed ID: 38412418
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Revealing silent vibration modes of nanomaterials by detecting anti-Stokes hyper-Raman scattering with femtosecond laser pulses.
    Zeng J; Chen L; Dai Q; Lan S; Tie S
    Nanoscale; 2016 Jan; 8(3):1572-9. PubMed ID: 26690965
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.