These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 3011759)

  • 1. Structural analysis of plasmid and chromosomal loci involved in site-specific excision and integration of the SLP1 element of Streptomyces coelicolor.
    Omer CA; Cohen SN
    J Bacteriol; 1986 Jun; 166(3):999-1006. PubMed ID: 3011759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of recombination occurring at SLP1 att sites.
    Lee SC; Omer CA; Brasch MA; Cohen SN
    J Bacteriol; 1988 Dec; 170(12):5806-13. PubMed ID: 3056916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmid formation in Streptomyces: excision and integration of the SLP1 replicon at a specific chromosomal site.
    Omer CA; Cohen SN
    Mol Gen Genet; 1984; 196(3):429-38. PubMed ID: 6094971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of transfer functions by the imp locus of the Streptomyces coelicolor plasmidogenic element SLP1.
    Hagege JM; Brasch MA; Cohen SN
    J Bacteriol; 1999 Oct; 181(19):5976-83. PubMed ID: 10498709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated DNA sequences in three streptomycetes form related autonomous plasmids after transfer to Streptomyces lividans.
    Hopwood DA; Hintermann G; Kieser T; Wright HM
    Plasmid; 1984 Jan; 11(1):1-16. PubMed ID: 6369354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The chromosomal integration site for the Streptomyces plasmid SLP1 is a functional tRNA(Tyr) gene essential for cell viability.
    Vögtli M; Cohen SN
    Mol Microbiol; 1992 Oct; 6(20):3041-50. PubMed ID: 1479893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Excision of chromosomal DNA sequences from Streptomyces coelicolor forms a novel family of plasmids detectable in Streptomyces lividans.
    Bibb MJ; Ward JM; Kieser T; Cohen SN; Hopwood DA
    Mol Gen Genet; 1981; 184(2):230-40. PubMed ID: 6948998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Excisive recombination of the SLP1 element in Streptomyces lividans is mediated by Int and enhanced by Xis.
    Brasch MA; Cohen SN
    J Bacteriol; 1993 May; 175(10):3075-82. PubMed ID: 8387994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Excision of pIJ408 from the chromosome of Streptomyces glaucescens and its transfer into Streptomyces lividans.
    Sosio M; Madoń J; Hütter R
    Mol Gen Genet; 1989 Jul; 218(1):169-76. PubMed ID: 2779515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Localization and nucleotide sequences of genes mediating site-specific recombination of the SLP1 element in Streptomyces lividans.
    Brasch MA; Pettis GS; Lee SC; Cohen SN
    J Bacteriol; 1993 May; 175(10):3067-74. PubMed ID: 8387993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site-specific insertion of biologically functional adventitious genes into the Streptomyces lividans chromosome.
    Omer CA; Stein D; Cohen SN
    J Bacteriol; 1988 May; 170(5):2174-84. PubMed ID: 2834330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The structure of an integrated copy of the giant linear plasmid SCP1 in the chromosome of Streptomyces coelicolor 2612.
    Hanafusa T; Kinashi H
    Mol Gen Genet; 1992 Feb; 231(3):363-8. PubMed ID: 1311404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The chromosomal integration site of the Streptomyces element pSAM2 overlaps a putative tRNA gene conserved among actinomycetes.
    Mazodier P; Thompson C; Boccard F
    Mol Gen Genet; 1990 Jul; 222(2-3):431-4. PubMed ID: 1703270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural analysis of loci involved in pSAM2 site-specific integration in Streptomyces.
    Boccard F; Smokvina T; Pernodet JL; Friedmann A; Guérineau M
    Plasmid; 1989 Jan; 21(1):59-70. PubMed ID: 2657820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site-specific integration in Saccharopolyspora erythraea and multisite integration in Streptomyces lividans of actinomycete plasmid pSE101.
    Brown DP; Chiang SJ; Tuan JS; Katz L
    J Bacteriol; 1988 May; 170(5):2287-95. PubMed ID: 2834338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The folate branch of the methionine biosynthesis pathway in Streptomyces lividans: disruption of the 5,10-methylenetetrahydrofolate reductase gene leads to methionine auxotrophy.
    Blanco J; Coque JJ; Martin JF
    J Bacteriol; 1998 Mar; 180(6):1586-91. PubMed ID: 9515933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transposition of IS117, the 2.5 kb Streptomyces coelicolor A3(2) 'minicircle': roles of open reading frames and origin of tandem insertions.
    Smokvina T; Henderson DJ; Melton RE; Brolle DF; Kieser T; Hopwood DA
    Mol Microbiol; 1994 May; 12(3):459-68. PubMed ID: 8065263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmids, recombination and chromosome mapping in Streptomyces lividans 66.
    Hopwood DA; Kieser T; Wright HM; Bibb MJ
    J Gen Microbiol; 1983 Jul; 129(7):2257-69. PubMed ID: 6631413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. tDNA(ser) sequences are involved in the excision of Streptomyces griseus plasmid pSG1.
    Bar-Nir D; Cohen A; Goedeke ME
    Gene; 1992 Dec; 122(1):71-6. PubMed ID: 1452039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The hyg gene promoter from Streptomyces hygroscopicus: a novel form of Streptomyces promoters.
    Pulido D; Zalacaín M; Jiménez A
    Biochem Biophys Res Commun; 1988 Feb; 151(1):270-4. PubMed ID: 2831883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.