These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 30117644)

  • 41. A Nonionic Alcohol Soluble Polymer Cathode Interlayer Enables Efficient Organic and Perovskite Solar Cells.
    Sharma A; Singh S; Song X; Rosas Villalva D; Troughton J; Corzo D; Toppare L; Gunbas G; Schroeder BC; Baran D
    Chem Mater; 2021 Nov; 33(22):8602-8611. PubMed ID: 35359824
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Interface control of semiconducting metal oxide layers for efficient and stable inverted polymer solar cells with open-circuit voltages over 1.0 volt.
    Yin Z; Zheng Q; Chen SC; Cai D
    ACS Appl Mater Interfaces; 2013 Sep; 5(18):9015-25. PubMed ID: 23984993
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Solution-Processed 8-Hydroquinolatolithium as Effective Cathode Interlayer for High-Performance Polymer Solar Cells.
    Liu W; Liang T; Chen Q; Yu Z; Zhang Y; Liu Y; Fu W; Tang F; Chen L; Chen H
    ACS Appl Mater Interfaces; 2016 Apr; 8(14):9254-61. PubMed ID: 27015527
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dithienobenzothiadiazole-based conjugated polymer: processing solvent-relied interchain aggregation and device performances in field-effect transistors and polymer solar cells.
    Huang J; Zhu Y; Chen J; Zhang L; Peng J; Cao Y
    Macromol Rapid Commun; 2014 Nov; 35(22):1960-7. PubMed ID: 25284276
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Efficient light trapping in inverted polymer solar cells by a randomly nanostructured electrode using monodispersed polymer nanoparticles.
    Kang DJ; Kang H; Cho C; Kim KH; Jeong S; Lee JY; Kim BJ
    Nanoscale; 2013 Mar; 5(5):1858-63. PubMed ID: 23338854
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Enhanced Power-Conversion Efficiency in Inverted Bulk Heterojunction Solar Cells using Liquid-Crystal-Conjugated Polyelectrolyte Interlayer.
    Liu C; Tan Y; Li C; Wu F; Chen L; Chen Y
    ACS Appl Mater Interfaces; 2015 Sep; 7(34):19024-33. PubMed ID: 26280810
    [TBL] [Abstract][Full Text] [Related]  

  • 47. High-Performance Nonfullerene Polymer Solar Cells Based on a Wide-Bandgap Polymer without Extra Treatment.
    Li G; Xu Q; Chang C; Fan Q; Zhu X; Li W; Guo X; Zhang M; Wong WY
    Macromol Rapid Commun; 2019 Jan; 40(1):e1800660. PubMed ID: 30350437
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nonconjugated anionic polyelectrolyte as an interfacial layer for the organic optoelectronic devices.
    Lim GE; Ha YE; Jo MY; Park J; Kang YC; Kim JH
    ACS Appl Mater Interfaces; 2013 Jul; 5(14):6508-13. PubMed ID: 23820385
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Recent advances in polymer solar cells: realization of high device performance by incorporating water/alcohol-soluble conjugated polymers as electrode buffer layer.
    He Z; Wu H; Cao Y
    Adv Mater; 2014 Feb; 26(7):1006-24. PubMed ID: 24338677
    [TBL] [Abstract][Full Text] [Related]  

  • 50. High-Performance Polymer Solar Cells with Zinc Sulfide-Phenanthroline Derivatives as the Hybrid Cathode Interlayers.
    Wu Y; Liu X; Li X; Zhang W; Wang HQ; Fang J
    ACS Appl Mater Interfaces; 2016 Feb; 8(4):2688-93. PubMed ID: 26757048
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Poly(sulfobetaine methacrylate)s as electrode modifiers for inverted organic electronics.
    Lee H; Puodziukynaite E; Zhang Y; Stephenson JC; Richter LJ; Fischer DA; DeLongchamp DM; Emrick T; Briseno AL
    J Am Chem Soc; 2015 Jan; 137(1):540-9. PubMed ID: 25489993
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Enhanced performance in inverted polymer solar cells with D-π-A-type molecular dye incorporated on ZnO buffer layer.
    Song CE; Ryu KY; Hong SJ; Bathula C; Lee SK; Shin WS; Lee JC; Choi SK; Kim JH; Moon SJ
    ChemSusChem; 2013 Aug; 6(8):1445-54. PubMed ID: 23897708
    [TBL] [Abstract][Full Text] [Related]  

  • 53. One-Pot Large-Scale Synthesis of Carbon Quantum Dots: Efficient Cathode Interlayers for Polymer Solar Cells.
    Yang Y; Lin X; Li W; Ou J; Yuan Z; Xie F; Hong W; Yu D; Ma Y; Chi Z; Chen X
    ACS Appl Mater Interfaces; 2017 May; 9(17):14953-14959. PubMed ID: 28395136
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Conductive conjugated polyelectrolyte as hole-transporting layer for organic bulk heterojunction solar cells.
    Zhou H; Zhang Y; Mai CK; Collins SD; Nguyen TQ; Bazan GC; Heeger AJ
    Adv Mater; 2014 Feb; 26(5):780-5. PubMed ID: 24170587
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Polymer/polymer blend solar cells with 2.0% efficiency developed by thermal purification of nanoscale-phase-separated morphology.
    Mori D; Benten H; Kosaka J; Ohkita H; Ito S; Miyake K
    ACS Appl Mater Interfaces; 2011 Aug; 3(8):2924-7. PubMed ID: 21728361
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Novel donor-acceptor polymer containing 4,7-bis(thiophen-2-yl)benzo[c][1,2,5]thiadiazole for polymer solar cells with power conversion efficiency of 6.21%.
    Han L; Bao X; Hu T; Du Z; Chen W; Zhu D; Liu Q; Sun M; Yang R
    Macromol Rapid Commun; 2014 Jun; 35(12):1153-7. PubMed ID: 24664990
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Tetraphenylphosphonium Bromide as a Cathode Buffer Layer Material for Highly Efficient Polymer Solar Cells.
    Gupta M; Yan D; Xu J; Yao J; Zhan C
    ACS Appl Mater Interfaces; 2018 Feb; 10(6):5569-5576. PubMed ID: 29359553
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A New Ester-Substituted Quinoxaline-Based Narrow Bandgap Polymer Donor for Organic Solar Cells.
    Luo Y; Luo Y; Huang X; Liu S; Cao Z; Guo L; Li Q; Cai YP; Wang Y
    Macromol Rapid Commun; 2021 Apr; 42(7):e2000683. PubMed ID: 33350003
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Power Conversion Efficiency and Device Stability Improvement of Inverted Perovskite Solar Cells by Using a ZnO:PFN Composite Cathode Buffer Layer.
    Jia X; Zhang L; Luo Q; Lu H; Li X; Xie Z; Yang Y; Li YQ; Liu X; Ma CQ
    ACS Appl Mater Interfaces; 2016 Jul; 8(28):18410-7. PubMed ID: 27349330
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Non-Covalent Interaction Enhancement on Active/Interfacial Layers via Two-Dimensional Vermiculite Doping for Efficient Organic Solar Cells.
    Ding X; Ding YF; Huang C; Li Y; Zhang M; Zhu C; Li Z
    Small; 2024 Feb; ():e2311715. PubMed ID: 38396319
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.