These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Cu and Cu-Based Nanoparticles: Synthesis and Applications in Catalysis. Gawande MB; Goswami A; Felpin FX; Asefa T; Huang X; Silva R; Zou X; Zboril R; Varma RS Chem Rev; 2016 Mar; 116(6):3722-811. PubMed ID: 26935812 [TBL] [Abstract][Full Text] [Related]
3. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction. Senanayake SD; Stacchiola D; Rodriguez JA Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528 [TBL] [Abstract][Full Text] [Related]
4. Synthesis, structural characterization and catalytic application of citrate-stabilized monometallic and bimetallic palladium@copper nanoparticles in microbial anti-activities. Ullah I; Khan K; Sohail M; Ullah K; Ullah A; Shaheen S Int J Nanomedicine; 2017; 12():8735-8747. PubMed ID: 29276383 [TBL] [Abstract][Full Text] [Related]
5. Selective hydrogenation of butadiene over TiO2 supported copper, gold and gold-copper catalysts prepared by deposition-precipitation. Delannoy L; Thrimurthulu G; Reddy PS; Méthivier C; Nelayah J; Reddy BM; Ricolleau C; Louis C Phys Chem Chem Phys; 2014 Dec; 16(48):26514-27. PubMed ID: 25051298 [TBL] [Abstract][Full Text] [Related]
6. Tuning the properties of copper-based catalysts based on molecular in situ studies of model systems. Stacchiola DJ Acc Chem Res; 2015 Jul; 48(7):2151-8. PubMed ID: 26103058 [TBL] [Abstract][Full Text] [Related]
7. Microwave-hydrothermal synthesis and characterization of nanostructured copper substituted ZnM2O4 (M = Al, Ga) spinels as precursors for thermally stable Cu catalysts. Conrad F; Massue C; Kühl S; Kunkes E; Girgsdies F; Kasatkin I; Zhang B; Friedrich M; Luo Y; Armbrüster M; Patzke GR; Behrens M Nanoscale; 2012 Mar; 4(6):2018-28. PubMed ID: 22327266 [TBL] [Abstract][Full Text] [Related]
8. Composition-dependent morphostructural properties of Ni-Cu oxide nanoparticles confined within the channels of ordered mesoporous SBA-15 silica. Ungureanu A; Dragoi B; Chirieac A; Ciotonea C; Royer S; Duprez D; Mamede AS; Dumitriu E ACS Appl Mater Interfaces; 2013 Apr; 5(8):3010-25. PubMed ID: 23496429 [TBL] [Abstract][Full Text] [Related]
10. Efficient low-temperature soot combustion by bimetallic Ag-Cu/SBA-15 catalysts. Wen Z; Duan X; Hu M; Cao Y; Ye L; Jiang L; Yuan Y J Environ Sci (China); 2018 Feb; 64():122-129. PubMed ID: 29478631 [TBL] [Abstract][Full Text] [Related]
11. Modern Chemical Routes for the Controlled Synthesis of Anisotropic Bimetallic Nanostructures and Their Application in Catalysis. Bhol P; Bhavya MB; Swain S; Saxena M; Samal AK Front Chem; 2020; 8():357. PubMed ID: 32528924 [TBL] [Abstract][Full Text] [Related]
12. Ultrasound-assistant preparation of Cu-SAPO-34 nanocatalyst for selective catalytic reduction of NO by NH3. Panahi PN; Niaei A; Salari D; Mousavi SM; Delahay G J Environ Sci (China); 2015 Sep; 35():135-143. PubMed ID: 26354702 [TBL] [Abstract][Full Text] [Related]
13. Catalytic hydrodechlorination of 1,2-dichloroethane using copper nanoparticles under reduction conditions of sodium borohydride. Huang CC; Lo SL; Tsai SM; Lien HL J Environ Monit; 2011 Sep; 13(9):2406-12. PubMed ID: 21850296 [TBL] [Abstract][Full Text] [Related]
14. A CO Adsorption Site Change Induced by Copper Substitution in a Ruthenium Catalyst for Enhanced CO Oxidation Activity. Huang B; Kobayashi H; Yamamoto T; Toriyama T; Matsumura S; Nishida Y; Sato K; Nagaoka K; Haneda M; Xie W; Nanba Y; Koyama M; Wang F; Kawaguchi S; Kubota Y; Kitagawa H Angew Chem Int Ed Engl; 2019 Feb; 58(8):2230-2235. PubMed ID: 30517769 [TBL] [Abstract][Full Text] [Related]
16. Strategy to Design-Synthesize Bimetallic Nanostructures Using the Alcohol Reduction Method. Ishijima M; Cuya Huaman JL; Wakizaka H; Suzuki K; Miyamura H; Balachandran J Inorg Chem; 2021 Sep; 60(18):14436-14445. PubMed ID: 34455795 [TBL] [Abstract][Full Text] [Related]
17. Copper-based biological alloys and nanocomposites for enzymatic catalysis and sensing applications. Pu Y; Chen S; Yang Y; Mao X Nanoscale; 2023 Jul; 15(28):11801-11812. PubMed ID: 37417923 [TBL] [Abstract][Full Text] [Related]
18. In situ spectroscopy of complex surface reactions on supported Pd-Zn, Pd-Ga, and Pd(Pt)-Cu nanoparticles. Föttinger K; Rupprechter G Acc Chem Res; 2014 Oct; 47(10):3071-9. PubMed ID: 25247260 [TBL] [Abstract][Full Text] [Related]
20. Novel combination of zero-valent Cu and Ag nanoparticles @ cellulose acetate nanocomposite for the reduction of 4-nitro phenol. Khan FU; Asimullah ; Khan SB; Kamal T; Asiri AM; Khan IU; Akhtar K Int J Biol Macromol; 2017 Sep; 102():868-877. PubMed ID: 28428128 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]