BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 30117816)

  • 21. Design and Implementation of a Novel Compatible Encoding Scheme in the Time Domain for Image Sensor Communication.
    Nguyen T; Hossain MA; Jang YM
    Sensors (Basel); 2016 May; 16(5):. PubMed ID: 27213396
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optical camera communication (OCC) using a laser-diode coupled optical-diffusing fiber (ODF) and rolling shutter image sensor.
    Tsai DC; Chang YH; Chow CW; Liu Y; Yeh CH; Peng CW; Hsu LS
    Opt Express; 2022 May; 30(10):16069-16077. PubMed ID: 36221459
    [TBL] [Abstract][Full Text] [Related]  

  • 23. RGB visible light communication using mobile-phone camera and multi-input multi-output.
    Liang K; Chow CW; Liu Y
    Opt Express; 2016 May; 24(9):9383-8. PubMed ID: 27137554
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spatial frequency-based angular behavior of a short-range flicker-free MIMO-OCC link.
    Teli SR; Zvanovec S; Perez-Jimenez R; Ghassemlooy Z
    Appl Opt; 2020 Nov; 59(33):10357-10368. PubMed ID: 33361967
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Object recognition in optical camera communication enabled by image restoration.
    Guo M; Zhang P; Sun Y; Zhang W; Zhou Y; Yang Y
    Opt Express; 2022 Sep; 30(20):37026-37037. PubMed ID: 36258621
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effective interference mitigation scheme for multi-LED-based mobile optical camera communication.
    Yang Y; He J; Zhou B
    Appl Opt; 2021 Dec; 60(35):10928-10934. PubMed ID: 35200855
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 47-kbit/s RGB-LED-based optical camera communication based on 2D-CNN and XOR-based data loss compensation.
    Liu L; Deng R; Chen LK
    Opt Express; 2019 Nov; 27(23):33840-33846. PubMed ID: 31878443
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Long-distance indoor optical camera communication using side-emitting fibers as distributed transmitters.
    Eöllős-Jarošíková K; Neuman V; Jurado-Verdú CM; Teli SR; Zvánovec S; Komanec M
    Opt Express; 2023 Jul; 31(16):26980-26989. PubMed ID: 37710546
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design and Experimental Characterization of a Discovery and Tracking System for Optical Camera Communications.
    Mederos-Barrera A; Jurado-Verdu C; Guerra V; Rabadan J; Perez-Jimenez R
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33921995
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of thresholding schemes for visible light communication using mobile-phone image sensor.
    Liu Y; Chow CW; Liang K; Chen HY; Hsu CW; Chen CY; Chen SH
    Opt Express; 2016 Feb; 24(3):1973-8. PubMed ID: 26906773
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rolling-shutter-effect camera-based visible light communication using RGB channel separation and an artificial neural network.
    Hsu KL; Chow CW; Liu Y; Wu YC; Hong CY; Liao XL; Lin KH; Chen YY
    Opt Express; 2020 Dec; 28(26):39956-39962. PubMed ID: 33379533
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deep learning based transceiver design for multi-colored VLC systems.
    Lee H; Lee I; Lee SH
    Opt Express; 2018 Mar; 26(5):6222-6238. PubMed ID: 29529814
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design and Implementation of a 2D MIMO OCC System Based on Deep Learning.
    Sitanggang OS; Nguyen VL; Nguyen H; Pamungkas RF; Faridh MM; Jang YM
    Sensors (Basel); 2023 Sep; 23(17):. PubMed ID: 37688093
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enabling user mobility for optical camera communication using mobile phone.
    Shi J; He J; He J; Jiang Z; Zhou Y; Xiao Y
    Opt Express; 2018 Aug; 26(17):21762-21767. PubMed ID: 30130877
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 2.38 Kbits/frame WDM transmission over a CVLC system with sampling reconstruction for SFO mitigation.
    Deng R; He J; Hong Y; Shi J; Chen L
    Opt Express; 2017 Nov; 25(24):30575-30581. PubMed ID: 29221084
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Anti error and erasure coding for water-to-air visible light communication through wavy water surface with wave height up to 0.6 meters.
    Fu C; Lin T; Gong C; Huang N; Wei T; Liu X; Tang L; Su L; Luo J; Xu Z
    Opt Express; 2022 May; 30(11):18743-18761. PubMed ID: 36221669
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-Speed Extraction of Regions of Interest in Optical Camera Communication Enabled by Grid Virtual Division.
    Hu X; Zhang P; Sun Y; Deng X; Yang Y; Chen L
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366071
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 400  m rolling-shutter-based optical camera communications link.
    Eso E; Teli S; Bani Hassan N; Vitek S; Ghassemlooy Z; Zvanovec S
    Opt Lett; 2020 Mar; 45(5):1059-1062. PubMed ID: 32108769
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Experimental Characterization of Close-Emitter Interference in an Optical Camera Communication System.
    Chavez-Burbano P; Guerra V; Rabadan J; Rodríguez-Esparragón D; Perez-Jimenez R
    Sensors (Basel); 2017 Jul; 17(7):. PubMed ID: 28677613
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Color-filter-free spatial visible light communication using RGB-LED and mobile-phone camera.
    Chen SH; Chow CW
    Opt Express; 2014 Dec; 22(25):30713-8. PubMed ID: 25607019
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.