BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 30117816)

  • 41. Wireless Sensor Networks Using Sub-Pixel Optical Camera Communications: Advances in Experimental Channel Evaluation.
    Matus V; Guerra V; Jurado-Verdu C; Zvanovec S; Perez-Jimenez R
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33924508
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Performance evaluation of neural network assisted motion detection schemes implemented within indoor optical camera based communications.
    Teli SR; Zvanovec S; Ghassemlooy Z
    Opt Express; 2019 Aug; 27(17):24082-24092. PubMed ID: 31510302
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Deep learning for signal clock and exposure estimation in rolling shutter optical camera communication.
    Jurado-Verdu C; Guerra V; Rabadan J; Perez-Jimenez R
    Opt Express; 2022 Jun; 30(12):20261-20277. PubMed ID: 36224776
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Experimental demonstration of indoor uplink near-infrared LED camera communication.
    Cahyadi WA; Chung YH
    Opt Express; 2018 Jul; 26(15):19657-19664. PubMed ID: 30114136
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Visible light communication using dual camera on one smartphone.
    Xu YQ; Hua J; Gong Z; Zhao W; Zhang ZQ; Xie CY; Chen ZT; Chen JF
    Opt Express; 2018 Dec; 26(26):34609-34621. PubMed ID: 30650882
    [TBL] [Abstract][Full Text] [Related]  

  • 46. PAM4 rolling-shutter demodulation using a pixel-per-symbol labeling neural network for optical camera communications.
    Lin YS; Chow CW; Liu Y; Chang YH; Lin KH; Wang YC; Chen YY
    Opt Express; 2021 Sep; 29(20):31680-31688. PubMed ID: 34615256
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Time-Sharing-Based Synchronization and Performance Evaluation of Color-Independent Visual-MIMO Communication.
    Kwon TH; Kim JE; Kim KD
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29758003
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of a vehicle's mobility on SNR and SINR in vehicular optical camera communication systems.
    Eghbal M; Tabataba FS; Gholami A; Abouei J; Uysal M
    Opt Express; 2024 Mar; 32(7):12257-12275. PubMed ID: 38571054
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Confidential multiple-input multiple-output optical camera communication aided by a two-dimensional pilot.
    Hu SS; Chi XF; Ji FL; Chen SQ; Hu GY
    Opt Lett; 2024 May; 49(10):2757-2760. PubMed ID: 38748154
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Increasing Vehicular Visible Light Communications Range Based on LED Current Overdriving and Variable Pulse Position Modulation: Concept and Experimental Validation.
    Beguni C; Căilean AM; Avătămăniței SA; Potorac AD; Zadobrischi E; Dimian M
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050717
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Robust VLC Beacon Identification for Indoor Camera-Based Localization Systems.
    Rátosi M; Simon G
    Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32365595
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Compressive sensing-based channel bandwidth improvement in optical wireless orthogonal frequency division multiplexing link using visible light emitting diode.
    Won YY; Yoon SM
    Opt Express; 2014 Aug; 22(17):19990-9. PubMed ID: 25321208
    [TBL] [Abstract][Full Text] [Related]  

  • 53. High-accuracy scheme based on a look-up table for motion detection in an optical camera communication system.
    He J; Huang Z; Yu K
    Opt Express; 2020 Mar; 28(7):10270-10279. PubMed ID: 32225615
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Scalable visible light communications with a micro-LED array projector and high-speed smartphone camera.
    Griffiths AD; Herrnsdorf J; Strain MJ; Dawson MD
    Opt Express; 2019 May; 27(11):15585-15594. PubMed ID: 31163753
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Long distance non-line-of-sight (NLOS) visible light signal detection based on rolling-shutter-patterning of mobile-phone camera.
    Wang WC; Chow CW; Wei LY; Liu Y; Yeh CH
    Opt Express; 2017 May; 25(9):10103-10108. PubMed ID: 28468385
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mobile User Connectivity in Relay-Assisted Visible Light Communications.
    Pešek P; Zvanovec S; Chvojka P; Bhatnagar MR; Ghassemlooy Z; Saxena P
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29642432
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Wavy water-to-air optical camera communication system using rolling shutter image sensor and long short term memory neural network.
    Tsai SY; Chang YH; Chow CW
    Opt Express; 2024 Feb; 32(5):6814-6822. PubMed ID: 38439378
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Performance Analysis of Visible Light Communication Using CMOS Sensors.
    Do TH; Yoo M
    Sensors (Basel); 2016 Feb; 16(3):309. PubMed ID: 26938535
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A 40 Mb/s VLC System Reusing an Existing Large LED Panel in an Indoor Office Environment.
    Li X; Ghassemlooy Z; Zvánovec S; Haigh PA
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33801195
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The Necessity of LED to Ambient Light Ratio Optimization for Vehicular Optical Camera Communication.
    Do TH; Yoo M
    Sensors (Basel); 2020 Jan; 20(1):. PubMed ID: 31948003
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.