These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 30117921)

  • 1. Surface plasmon propagation enhancement via bowtie antenna incorporation in Au-mica block waveguides.
    Pita IA; Kumbham M; Schmidt M; Gleeson M; Ryan KM; Silien C; Liu N
    Appl Opt; 2018 Aug; 57(22):E50-E56. PubMed ID: 30117921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High efficiency excitation of plasmonic waveguides with vertically integrated resonant bowtie apertures.
    Kinzel EC; Xu X
    Opt Express; 2009 May; 17(10):8036-45. PubMed ID: 19434135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complementary bowtie aperture for localizing and enhancing optical magnetic field.
    Zhou N; Kinzel EC; Xu X
    Opt Lett; 2011 Aug; 36(15):2764-6. PubMed ID: 21808305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sierpiński fractal plasmonic antenna: a fractal abstraction of the plasmonic bowtie antenna.
    Sederberg S; Elezzabi AY
    Opt Express; 2011 May; 19(11):10456-61. PubMed ID: 21643300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of a Broadband Difference Interferometer Based on Low-Cost Polymer Slab Waveguides.
    Gut K
    Nanomaterials (Basel); 2019 May; 9(5):. PubMed ID: 31083524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly polarization-sensitive far infrared detector based on an optical antenna integrated aligned carbon nanotube film.
    Chen B; Ji Z; Zhou J; Yu Y; Dai X; Lan M; Bu Y; Zhu T; Li Z; Hao J; Chen X
    Nanoscale; 2020 Jun; 12(22):11808-11817. PubMed ID: 32285070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable plasmon modes in single silver nanowire optical antennas characterized by far-field microscope polarization spectroscopy.
    Fu M; Qian L; Long H; Wang K; Lu P; Rakovich YP; Hetsch F; Susha AS; Rogach AL
    Nanoscale; 2014 Aug; 6(15):9192-7. PubMed ID: 24981883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polarization-dependent SERS effects of laser-generated sub-100 nm antenna structures.
    Chen L; Zhai T; Zhang X; Unger C; Koch J; Chichkov BN; Klar PJ
    Nanotechnology; 2014 Jul; 25(26):265302. PubMed ID: 24915959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional plasmonic antenna scanning probes fabricated by induced-deposition mask lithography.
    Weber-Bargioni A; Schwartzberg A; Schmidt M; Harteneck B; Ogletree DF; Schuck PJ; Cabrini S
    Nanotechnology; 2010 Feb; 21(6):065306. PubMed ID: 20061594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultra-broadband infrared absorption by tapered hyperbolic multilayer waveguides.
    Deng H; Mathai CJ; Gangopadhyay S; Gao J; Yang X
    Opt Express; 2018 Mar; 26(5):6360-6370. PubMed ID: 29529828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene-based hybrid plasmonic waveguide for highly efficient broadband mid-infrared propagation and modulation.
    Ye L; Sui K; Liu Y; Zhang M; Liu QH
    Opt Express; 2018 Jun; 26(12):15935-15947. PubMed ID: 30114847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light propagation in a planar dielectric waveguide with a gyrotropic layer.
    Hogenboom DO; Oliver SA; Dimarzio CA
    Appl Opt; 1998 Nov; 37(31):7218-22. PubMed ID: 18301549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps.
    Schnell M; Garcia-Etxarri A; Alkorta J; Aizpurua J; Hillenbrand R
    Nano Lett; 2010 Sep; 10(9):3524-8. PubMed ID: 20701270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conditions for stronger field enhancement of semiconductor bowtie nanoantennas.
    Uemoto M; Ajiki H
    Opt Lett; 2015 Apr; 40(8):1695-8. PubMed ID: 25872050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bowtie plasmonic quantum cascade laser antenna.
    Yu N; Cubukcu E; Diehl L; Bour D; Corzine S; Zhu J; Höfler G; Crozier KB; Capasso F
    Opt Express; 2007 Oct; 15(20):13272-81. PubMed ID: 19550597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable optical response of bowtie nanoantenna arrays on thermoplastic substrates.
    Sharac N; Sharma H; Veysi M; Sanderson RN; Khine M; Capolino F; Ragan R
    Nanotechnology; 2016 Mar; 27(10):105302. PubMed ID: 26867001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Femtosecond laser writing of waveguide retarders in fused silica for polarization control in optical circuits.
    Fernandes LA; Grenier JR; Herman PR; Aitchison JS; Marques PV
    Opt Express; 2011 Sep; 19(19):18294-301. PubMed ID: 21935196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polarization-Entangled Photon Pairs From Periodically-Poled Crystalline Waveguides Over a Range of Frequencies.
    Heberle DA; Levine ZH
    J Res Natl Inst Stand Technol; 2013; 118():375-80. PubMed ID: 26401438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and fabrication of surface trimmed silicon-on-insulator waveguide with adiabatic spot-size converters.
    Chandran S; Sundaram M; Kurudi S; Das BK
    Appl Opt; 2017 Feb; 56(6):1708-1716. PubMed ID: 28234373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Waveguide-coupled nanowire as an optical antenna.
    Arnaud L; Bruyant A; Renault M; Hadjar Y; Salas-Montiel R; Apuzzo A; Lérondel G; Morand A; Benech P; Le Coarer E; Blaize S
    J Opt Soc Am A Opt Image Sci Vis; 2013 Nov; 30(11):2347-55. PubMed ID: 24322935
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.