These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 30118081)

  • 1. Design of a high-numerical-aperture extreme ultraviolet lithography illumination system.
    Jiang J; Li Y; Shen S; Mao S
    Appl Opt; 2018 Jul; 57(20):5673-5679. PubMed ID: 30118081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of an illumination system for high numerical aperture anamorphic extreme ultraviolet projection lithography.
    Hao Q; Yan X; Liu K; Li Y; Liu L; Zheng M
    Opt Express; 2021 Mar; 29(7):10982-10996. PubMed ID: 33820220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Grouping design method dependence on an illumination system and large off-axis distance for an anamorphic extreme ultraviolet lithography objective.
    Yan X; Li Y; Liu L; Liu K
    Appl Opt; 2022 Jan; 61(3):806-811. PubMed ID: 35200787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of anamorphic magnification high-numerical aperture objective for extreme ultraviolet lithography by curvatures combination method.
    Liu Y; Li Y; Cao Z
    Appl Opt; 2016 Jun; 55(18):4917-23. PubMed ID: 27409118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of three-mirror illumination system with free-form fly's eye for extreme ultraviolet lithography.
    Mei Q; Li Y
    Appl Opt; 2015 Mar; 54(8):2091-7. PubMed ID: 25968388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Initial structure design of coaxial six-ten mirror central-obscured extreme ultraviolet lithographic objective.
    Liu F; Li Y
    Appl Opt; 2014 Oct; 53(28):6444-51. PubMed ID: 25322231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anamorphic objective design for extreme ultraviolet lithography at the 5∼1  nm technology node.
    Liu M; Li Y
    Appl Opt; 2021 Aug; 60(24):7254-7258. PubMed ID: 34613013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-performance laser projection display illumination system based on a diffractive optical element.
    Liang C; Zhang W; Rui D; Sui Y; Yang H
    Appl Opt; 2017 Apr; 56(10):2810-2815. PubMed ID: 28375246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Illumination system design for a three-aspherical-mirror projection camera for extreme-ultraviolet lithography.
    Li Y; Kinoshita H; Watanabe T; Irie S; Shirayone S; Okazaki S
    Appl Opt; 2000 Jul; 39(19):3253-60. PubMed ID: 18349890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single spherical mirror optic for extreme ultraviolet lithography enabled by inverse lithography technology.
    Scranton G; Bhargava S; Ganapati V; Yablonovitch E
    Opt Express; 2014 Oct; 22(21):25027-42. PubMed ID: 25401536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extreme ultraviolet mask roughness effects in high numerical aperture lithography.
    Naulleau P; Wang YG; Pistor T
    Appl Opt; 2018 Mar; 57(7):1724-1730. PubMed ID: 29522026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of an extreme ultraviolet lithography projection objective with a grouping design method through forward and reverse real ray tracing.
    Yan X; Li Y; Li Y; Liu L; Liu K
    Appl Opt; 2022 Sep; 61(25):7449-7454. PubMed ID: 36256048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Co-optimization method to reduce the pattern distortion caused by polarization aberration in anamorphic EUV lithography.
    Sheng N; Sun Y; Li E; Li T; Li Y; Wei P; Liu L
    Appl Opt; 2019 May; 58(14):3718-3728. PubMed ID: 31158182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Grouping design of eight-mirror projection objective for high-numerical aperture EUV lithography.
    Liu F; Li Y
    Appl Opt; 2013 Oct; 52(29):7137-44. PubMed ID: 24217731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lithographic characterization of the spherical error in an extreme-ultraviolet optic by use of a programmable pupil-fill illuminator.
    Naulleau PP; Cain JP; Goldberg KA
    Appl Opt; 2006 Mar; 45(9):1957-63. PubMed ID: 16579565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An approach to increase efficiency of DOE based pupil shaping technique for off-axis illumination in optical lithography.
    Zhang F; Zhu J; Yue W; Wang J; Song Q; Situ G; Wyrowski F; Huang H
    Opt Express; 2015 Feb; 23(4):4482-93. PubMed ID: 25836485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vectorial pupil optimization to compensate polarization distortion in immersion lithography system.
    Li T; Liu Y; Sun Y; Yan X; Wei P; Li Y
    Opt Express; 2020 Feb; 28(4):4412-4425. PubMed ID: 32121678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aberration optimization in an extreme ultraviolet lithography projector via a BP neural network and simulated annealing algorithm.
    Zhao R; Dong L; Chen R; Wei Y
    Appl Opt; 2021 Feb; 60(5):1341-1348. PubMed ID: 33690577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design method for the high optical efficiency and uniformity illumination system of the projector.
    Bai X; Jing X; Liao N
    Opt Express; 2021 Apr; 29(8):12502-12515. PubMed ID: 33985008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wavefront measurements using the Ronchi test for high-NA lithography projection lenses.
    Yu X; Li J
    Appl Opt; 2023 Jul; 62(19):5057-5063. PubMed ID: 37707206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.