These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 30118093)

  • 1. Precision fringe period metrology using an LSQ sine fit algorithm.
    Xiang X; Li M; Wei C; Zhou C
    Appl Opt; 2018 Jun; 57(17):4777-4784. PubMed ID: 30118093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterodyne period measurement in a scanning beam interference lithography system.
    Jiang S; Lü B; Song Y; Liu Z; Wang W; Shuo L; Bayanheshig
    Appl Opt; 2020 Jul; 59(19):5830-5836. PubMed ID: 32609710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-range in situ picometer measurement of the period of an interference field.
    Xiang X; Jia W; Xiang C; Li M; Bu F; Zhu S; Zhou C; Wei C
    Appl Opt; 2019 Apr; 58(11):2929-2935. PubMed ID: 31044895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical Sensors for Multi-Axis Angle and Displacement Measurement Using Grating Reflectors.
    Shimizu Y; Matsukuma H; Gao W
    Sensors (Basel); 2019 Dec; 19(23):. PubMed ID: 31805630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scan angle error measurement based on phase-stepping algorithms in scanning beam interference lithography.
    Li M; Xiang X; Zhou C; Wei C
    Appl Opt; 2019 Apr; 58(10):2641-2649. PubMed ID: 31045064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Achieving unlimited recording length in interference lithography via broad-beam scanning exposure with self-referencing alignment.
    Ma D; Zhao Y; Zeng L
    Sci Rep; 2017 Apr; 7(1):926. PubMed ID: 28424475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Holographic fabrication of an arrayed one-axis scale grating for a two-probe optical linear encoder.
    Li X; Zhou Q; Zhu X; Lu H; Yang L; Ma D; Sun J; Ni K; Wang X
    Opt Express; 2017 Jul; 25(14):16028-16039. PubMed ID: 28789121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of 50 nm period gratings with multilevel interference lithography.
    Chang CH; Zhao Y; Heilmann RK; Schattenburg ML
    Opt Lett; 2008 Jul; 33(14):1572-4. PubMed ID: 18628801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative investigation on a period variation reduction method for the fabrication of large-area gratings using two-spherical-beam laser interference lithography.
    Nagaraj Rao RR; Bienert F; Moeller M; Bashir D; Hamri A; Celle F; Gamet E; Ahmed MA; Jourlin Y
    Opt Express; 2023 Jan; 31(1):371-380. PubMed ID: 36606973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fourier optics analysis of grating sensors with tilt errors.
    Ferhanoglu O; Toy MF; Urey H
    Opt Lett; 2011 Jun; 36(12):2254-6. PubMed ID: 21685984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanometer-scale displacement measurement using a simple diffraction grating with a quadrature detection technique.
    Nuntakulkaisak T; Bavontaweepanya R; Infahsaeng Y; Wongjom P; Pijitrojana W; Suwanna S; Pongophas E
    Opt Lett; 2022 Oct; 47(19):5156-5159. PubMed ID: 36181210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interference sensor for ultra-precision measurement of laser beam angular deflection.
    Dobosz M
    Rev Sci Instrum; 2018 Nov; 89(11):115003. PubMed ID: 30501332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pulse compression grating fabrication by diffractive proximity photolithography.
    Stuerzebecher L; Fuchs F; Harzendorf T; Zeitner UD
    Opt Lett; 2014 Feb; 39(4):1042-5. PubMed ID: 24562273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation on the properties of a laminar grating as a soft x-ray beam splitter.
    Liu Y; Fuchs HJ; Liu Z; Chen H; He S; Fu S; Kley EB; Tünnermann A
    Appl Opt; 2010 Aug; 49(23):4450-9. PubMed ID: 20697449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beam drift error and control technology for scanning beam interference lithography.
    Wang W; Song Y; Jiang S; Pan M; Bayanheshig
    Appl Opt; 2017 May; 56(14):4138-4145. PubMed ID: 29047546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-dimensional displacement measurement based on two parallel gratings.
    Wei P; Lu X; Qiao D; Zou L; Huang X; Tan J; Lu Z
    Rev Sci Instrum; 2018 Jun; 89(6):065105. PubMed ID: 29960576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An improved phase shift reconstruction algorithm of fringe scanning technique for X-ray microscopy.
    Lian S; Yang H; Kudo H; Momose A; Yashiro W
    Rev Sci Instrum; 2015 Feb; 86(2):023707. PubMed ID: 25725852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of phase edge singularities by coplanar three-beam interference and their detection.
    Patorski K; Sluzewski L; Trusiak M; Pokorski K
    Opt Express; 2017 Feb; 25(3):2432-2445. PubMed ID: 29519089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-precision displacement measurement algorithm based on a depth fusion of grating projection pattern.
    Yu H; Wan Q; Lu X; Du Y; Liang L
    Appl Opt; 2022 Feb; 61(4):1049-1056. PubMed ID: 35201078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of asymmetric grating structures on measurement accuracy in integrated phase grating interference-based metrology.
    Zhang T; Zhao X; Cui J; Tan J
    Appl Opt; 2019 Mar; 58(7):1847-1854. PubMed ID: 30874224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.