These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 3011815)

  • 1. Characterization of water in unfertilized and fertilized sea urchin eggs.
    Merta PJ; Fullerton GD; Cameron IL
    J Cell Physiol; 1986 Jun; 127(3):439-47. PubMed ID: 3011815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell cycle changes in water properties in sea urchin eggs.
    Cameron IL; Cook KR; Edwards D; Fullerton GD; Schatten G; Schatten H; Zimmerman AM; Zimmerman S
    J Cell Physiol; 1987 Oct; 133(1):14-24. PubMed ID: 3667701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of cytomatrix proteins on water and on ions in cells.
    Cameron IL; Fullerton GD; Smith NK
    Scanning Microsc; 1988 Mar; 2(1):275-88. PubMed ID: 3285455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of intracellular pH in sea urchin eggs by 31P NMR.
    Inoue H; Yoshioka T
    J Cell Physiol; 1980 Dec; 105(3):461-8. PubMed ID: 6780576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ovostatin, an endogenous trypsin inhibitor of sea urchin eggs: purification and characterization of ovostatin from eggs of the sea urchin, Strongylocentrotus intermedius.
    Yamada Y; Aketa K
    Gamete Res; 1988 Mar; 19(3):265-75. PubMed ID: 3058564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of divalent cations in activation of the sea urchin egg. I. Effect of fertilization on divalent cation content.
    Azarnia R; Chambers EL
    J Exp Zool; 1976 Oct; 198(1):65-77. PubMed ID: 978163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intracellular pH shift leads to microtubule assembly and microtubule-mediated motility during sea urchin fertilization: correlations between elevated intracellular pH and microtubule activity and depressed intracellular pH and microtubule disassembly.
    Schatten G; Bestor T; Balczon R; Henson J; Schatten H
    Eur J Cell Biol; 1985 Jan; 36(1):116-27. PubMed ID: 4038941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein synthesis increases after fertilization of sea urchin eggs in the absence of an increase in intracellular pH.
    Rees BB; Patton C; Grainger JL; Epel D
    Dev Biol; 1995 Jun; 169(2):683-98. PubMed ID: 7781908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insulin receptor sites as membrane markers during embryonic development. I. Data obtained with unfertilized and fertilized sea urchin eggs.
    Jeanmart J; Uytdenhoef P; De Sutter G; Legros F
    Differentiation; 1976 Nov; 7(1):23-30. PubMed ID: 188707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of cytoskeletal inhibitors on water proton relaxation time changes in unfertilized and fertilized sea urchin eggs.
    Zimmerman S; Zimmerman AM; Cameron IL; Fullerton GD; Schatten H; Schatten G
    Cell Biol Int Rep; 1987 Aug; 11(8):605-14. PubMed ID: 2887300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The in vivo rate of glucose-6-phosphate dehydrogenase activity in sea urchin eggs determined with a photolabile caged substrate.
    Swezey RR; Epel D
    Dev Biol; 1995 Jun; 169(2):733-44. PubMed ID: 7781912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accumulation of fluorescently labeled actin in the cortical layer in sea urchin eggs after fertilization.
    Hamaguchi Y; Mabuchi I
    Cell Motil Cytoskeleton; 1988; 9(2):153-63. PubMed ID: 3359492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The membrane capacitance of the sea urchin egg.
    ROTHSCHILD
    J Biophys Biochem Cytol; 1957 Jan; 3(1):103-10. PubMed ID: 13416315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Osmotic and motional properties of intracellular water as influenced by osmotic swelling and shrinkage of Xenopus oocytes.
    Cameron IL; Merta P; Fullerton GD
    J Cell Physiol; 1990 Mar; 142(3):592-602. PubMed ID: 2312616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Caffeine-induced calcium release in sea urchin eggs and the effect of continuous versus pulsed application on the mitotic apparatus.
    Harris PJ
    Dev Biol; 1994 Feb; 161(2):370-8. PubMed ID: 8313989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. After fertilization of sea urchin eggs, eIF4G is post-translationally modified and associated with the cap-binding protein eIF4E.
    Oulhen N; Salaün P; Cosson B; Cormier P; Morales J
    J Cell Sci; 2007 Feb; 120(Pt 3):425-34. PubMed ID: 17213333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An NMR method to characterize multiple water compartments on mammalian collagen.
    Fullerton GD; Nes E; Amurao M; Rahal A; Krasnosselskaia L; Cameron I
    Cell Biol Int; 2006 Jan; 30(1):66-73. PubMed ID: 16376582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relative changes in F-actin during the first cell cycle: evidence for two distinct pools of F-actin in the sea urchin egg.
    Heil-Chapdelaine RA; Otto JJ
    Cell Motil Cytoskeleton; 1996; 34(1):26-35. PubMed ID: 8860229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of the tricarboxylic acid cycle in sea urchin eggs and embryos.
    Mita M; Yasumasu I
    J Exp Zool; 1983 Oct; 228(1):71-7. PubMed ID: 6663254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of caulerpenyne, a toxin extracted from Caulerpa taxifolia on mechanisms regulating intracellular pH in sea urchin eggs and sea bream hepatocytes.
    Galgani I; Pesando D; Porthe-Nibelle J; Fossat B; Girard JP
    J Biochem Toxicol; 1996; 11(5):243-50. PubMed ID: 9110246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.