These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 30118157)

  • 1. Boosting Hydrogen Production by Anodic Oxidation of Primary Amines over a NiSe Nanorod Electrode.
    Huang Y; Chong X; Liu C; Liang Y; Zhang B
    Angew Chem Int Ed Engl; 2018 Oct; 57(40):13163-13166. PubMed ID: 30118157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrating Hydrogen Production with Aqueous Selective Semi-Dehydrogenation of Tetrahydroisoquinolines over a Ni
    Huang C; Huang Y; Liu C; Yu Y; Zhang B
    Angew Chem Int Ed Engl; 2019 Aug; 58(35):12014-12017. PubMed ID: 31268216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Boosting hydrogen generation by anodic oxidation of iodide over Ni-Co(OH)
    Hu E; Yao Y; Chen Y; Cui Y; Wang Z; Qian G
    Nanoscale Adv; 2021 Jan; 3(2):604-610. PubMed ID: 36131743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bifunctional Ni Foam Supported TiO
    Wei M; Li M; Gao Q; Cai X; Zhang S; Fang Y; Peng F; Yang S
    Small; 2024 Mar; 20(9):e2305906. PubMed ID: 37857591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent progress in energy-saving electrocatalytic hydrogen production
    Gao T; An Q; Tang X; Yue Q; Zhang Y; Li B; Li P; Jin Z
    Phys Chem Chem Phys; 2024 Jul; ():. PubMed ID: 39011574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction of Synergistic Ni
    Yang S; Guo Y; Zhao Y; Zhang L; Shen H; Wang J; Li J; Wu C; Wang W; Cao Y; Zhuo S; Zhang Q; Zhang H
    Small; 2022 Jun; 18(24):e2201306. PubMed ID: 35570703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrocatalytic and photocatalytic hydrogen evolution integrated with organic oxidation.
    You B; Han G; Sun Y
    Chem Commun (Camb); 2018 Jun; 54(47):5943-5955. PubMed ID: 29761801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterogeneous Ni-MoN nanosheet-assembled microspheres for urea-assisted hydrogen production.
    Shen H; Wei T; Liu Q; Zhang S; Luo J; Liu X
    J Colloid Interface Sci; 2023 Mar; 634():730-736. PubMed ID: 36563429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Upgrading Organic Compounds through the Coupling of Electrooxidation with Hydrogen Evolution.
    Chen G; Li X; Feng X
    Angew Chem Int Ed Engl; 2022 Oct; 61(42):e202209014. PubMed ID: 35849025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cobalt-metalloid alloys for electrochemical oxidation of 5-hydroxymethylfurfural as an alternative anode reaction in lieu of oxygen evolution during water splitting.
    Weidner J; Barwe S; Sliozberg K; Piontek S; Masa J; Apfel UP; Schuhmann W
    Beilstein J Org Chem; 2018; 14():1436-1445. PubMed ID: 29977407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unlocking Efficient Hydrogen Production: Nucleophilic Oxidation Reactions Coupled with Water Splitting.
    Wang P; Zheng J; Xu X; Zhang YQ; Shi QF; Wan Y; Ramakrishna S; Zhang J; Zhu L; Yokoshima T; Yamauchi Y; Long YZ
    Adv Mater; 2024 Jun; ():e2404806. PubMed ID: 38857437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Innovative Strategies for Electrocatalytic Water Splitting.
    You B; Sun Y
    Acc Chem Res; 2018 Jul; 51(7):1571-1580. PubMed ID: 29537825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A General Strategy for Decoupled Hydrogen Production from Water Splitting by Integrating Oxidative Biomass Valorization.
    You B; Liu X; Jiang N; Sun Y
    J Am Chem Soc; 2016 Oct; 138(41):13639-13646. PubMed ID: 27652996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decoupling hydrogen production from water oxidation by integrating a triphase interfacial bioelectrochemical cascade reaction.
    Zhang J; Sheng X; Ding Z; Wang H; Feng L; Zhang X; Wen L; Jiang L; Feng X
    Sci Bull (Beijing); 2021 Jan; 66(2):164-169. PubMed ID: 36654224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioinspired Electrode for the Production and Timely Separation of Nitrile and Hydrogen.
    Jiao J; Wang X; Wei C; Zhao Y
    Small; 2023 Jun; 19(26):e2208044. PubMed ID: 36938916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Double Active Sites in Co-N
    Qin M; Fan S; Li X; Yin Z; Wang L; Chen A
    ACS Appl Mater Interfaces; 2021 Aug; 13(32):38256-38265. PubMed ID: 34342991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconsidering Water Electrolysis: Producing Hydrogen at Cathodes Together with Selective Oxidation of n-Butylamine at Anodes.
    Xue S; Watzele S; Čolić V; Brandl K; Garlyyev B; Bandarenka AS
    ChemSusChem; 2017 Dec; 10(24):4812-4816. PubMed ID: 29064188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NiSe-Ni
    Chen Y; Ren Z; Fu H; Zhang X; Tian G; Fu H
    Small; 2018 Jun; 14(25):e1800763. PubMed ID: 29806149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bromine-mediated strategy endows efficient electrochemical oxidation of amine to nitrile.
    Zhang Y; Zhao J; Cheng J; Wang X; Wang H; Shao Y; Mao X; He X
    Chem Commun (Camb); 2024 Feb; 60(17):2369-2372. PubMed ID: 38318781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accelerating Hydrogen Evolution by Anodic Electrosynthesis of Value-Added Chemicals in Water over Non-Precious Metal Electrocatalysts.
    Xiang M; Wang N; Xu Z; Zhang H; Yan Z
    Chempluschem; 2021 Sep; 86(9):1307-1315. PubMed ID: 34519445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.