BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 30118219)

  • 1. Cell Penetration Profiling Using the Chloroalkane Penetration Assay.
    Peraro L; Deprey KL; Moser MK; Zou Z; Ball HL; Levine B; Kritzer JA
    J Am Chem Soc; 2018 Sep; 140(36):11360-11369. PubMed ID: 30118219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative measurement of cytosolic penetration using the chloroalkane penetration assay.
    Deprey K; Kritzer JA
    Methods Enzymol; 2020; 641():277-309. PubMed ID: 32713526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparing Cell Penetration of Biotherapeutics across Human Cell Lines.
    Batistatou N; Kritzer JA
    ACS Chem Biol; 2024 Jun; 19(6):1351-1365. PubMed ID: 38836425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative Measurement of Cytosolic and Nuclear Penetration of Oligonucleotide Therapeutics.
    Deprey K; Batistatou N; Debets MF; Godfrey J; VanderWall KB; Miles RR; Shehaj L; Guo J; Andreucci A; Kandasamy P; Lu G; Shimizu M; Vargeese C; Kritzer JA
    ACS Chem Biol; 2022 Feb; 17(2):348-360. PubMed ID: 35034446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parallel Screening Using the Chloroalkane Penetration Assay Reveals Structure-Penetration Relationships.
    Mientkiewicz KM; Peraro L; Kritzer JA
    ACS Chem Biol; 2021 Jul; 16(7):1184-1190. PubMed ID: 34224243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell-Penetrating Streptavidin: A General Tool for Bifunctional Delivery with Spatiotemporal Control, Mediated by Transport Systems Such as Adaptive Benzopolysulfane Networks.
    López-Andarias J; Saarbach J; Moreau D; Cheng Y; Derivery E; Laurent Q; González-Gaitán M; Winssinger N; Sakai N; Matile S
    J Am Chem Soc; 2020 Mar; 142(10):4784-4792. PubMed ID: 32109058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigating the Cytosolic Delivery of Proteins by Lipid Nanoparticles Using the Chloroalkane Penetration Assay.
    Wang J; Zhang S; Li Y; Xu Q; Kritzer JA
    Biochemistry; 2024 Feb; ():. PubMed ID: 38334719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated high-content imaging for cellular uptake, from the Schmuck cation to the latest cyclic oligochalcogenides.
    Martinent R; López-Andarias J; Moreau D; Cheng Y; Sakai N; Matile S
    Beilstein J Org Chem; 2020; 16():2007-2016. PubMed ID: 32831957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein Delivery to Cytosol by Cell-Penetrating Peptide Bearing Tandem Repeat Penetration-Accelerating Sequence.
    Okuda A; Futaki S
    Methods Mol Biol; 2022; 2383():265-273. PubMed ID: 34766296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Streamlined Target Deconvolution Approach Utilizing a Single Photoreactive Chloroalkane Capture Tag.
    Friedman Ohana R; Levin S; Hurst R; Rosenblatt MM; Zimmerman K; Machleidt T; Wood KV; Kirkland TA
    ACS Chem Biol; 2021 Feb; 16(2):404-413. PubMed ID: 33543920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stapling of short cell-penetrating peptides for enhanced tumor cell-and-tissue dual-penetration.
    Shi M; Jiang Z; Xiao Y; Song Y; Tang R; Zhang L; Huang J; Tian Y; Zhou S
    Chem Commun (Camb); 2022 Feb; 58(14):2299-2302. PubMed ID: 35075473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stapled peptides for intracellular drug targets.
    Verdine GL; Hilinski GJ
    Methods Enzymol; 2012; 503():3-33. PubMed ID: 22230563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA-histone complexes as ligands amplify cell penetration and nuclear targeting of anti-DNA antibodies via energy-independent mechanisms.
    Zannikou M; Bellou S; Eliades P; Hatzioannou A; Mantzaris MD; Carayanniotis G; Avrameas S; Lymberi P
    Immunology; 2016 Jan; 147(1):73-81. PubMed ID: 26447818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NanoClick: A High Throughput, Target-Agnostic Peptide Cell Permeability Assay.
    Peier A; Ge L; Boyer N; Frost J; Duggal R; Biswas K; Edmondson S; Hermes JD; Yan L; Zimprich C; Sadruddin A; Kristal Kaan HY; Chandramohan A; Brown CJ; Thean D; Lee XE; Yuen TY; Ferrer-Gago FJ; Johannes CW; Lane DP; Sherborne B; Corona C; Robers MB; Sawyer TK; Partridge AW
    ACS Chem Biol; 2021 Feb; 16(2):293-309. PubMed ID: 33539064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing the Cell Permeability of Bivalent Chemical Degraders Using the Chloroalkane Penetration Assay.
    Foley CA; Potjewyd F; Lamb KN; James LI; Frye SV
    ACS Chem Biol; 2020 Jan; 15(1):290-295. PubMed ID: 31846298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell penetration of oxadiazole-containing macrocycles.
    Huh S; Batistatou N; Wang J; Saunders GJ; Kritzer JA; Yudin AK
    RSC Chem Biol; 2024 Apr; 5(4):328-334. PubMed ID: 38576720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrocarbon staple constructing highly efficient α-helix cell-penetrating peptides for intracellular cargo delivery.
    Li S; Zhang X; Guo C; Peng Y; Liu X; Wang B; Zhuang R; Chang M; Wang R
    Chem Commun (Camb); 2020 Dec; 56(100):15655-15658. PubMed ID: 33355559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biological Membrane-Penetrating Peptides: Computational Prediction and Applications.
    de Oliveira ECL; da Costa KS; Taube PS; Lima AH; Junior CSS
    Front Cell Infect Microbiol; 2022; 12():838259. PubMed ID: 35402305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isothiocyanate groups of 4,4'-diisothiocyanatostilbene-2,2'-disulfonate (DIDS) inhibit cell penetration of octa-arginine (R8)-fused peptides.
    Park J; Han JH; Myung SH; Kim TH
    J Pept Sci; 2020 Mar; 26(3):e3237. PubMed ID: 31852026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of the attachment of a penetration accelerating sequence and the influence of hydrophobicity on octaarginine-mediated intracellular delivery.
    Takayama K; Hirose H; Tanaka G; Pujals S; Katayama S; Nakase I; Futaki S
    Mol Pharm; 2012 May; 9(5):1222-30. PubMed ID: 22486588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.