These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 30118298)

  • 1. Photothermal Engineering of Graphene Plasmons.
    Yu R; Guo Q; Xia F; García de Abajo FJ
    Phys Rev Lett; 2018 Aug; 121(5):057404. PubMed ID: 30118298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal manipulation of plasmons in atomically thin films.
    Dias EJC; Yu R; García de Abajo FJ
    Light Sci Appl; 2020; 9():87. PubMed ID: 32435470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single wavelength light-mediated, synergistic bimodal cancer photoablation and amplified photothermal performance by graphene/gold nanostar/photosensitizer theranostics.
    Wu C; Li D; Wang L; Guan X; Tian Y; Yang H; Li S; Liu Y
    Acta Biomater; 2017 Apr; 53():631-642. PubMed ID: 28161572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy.
    Alonso-González P; Nikitin AY; Gao Y; Woessner A; Lundeberg MB; Principi A; Forcellini N; Yan W; Vélez S; Huber AJ; Watanabe K; Taniguchi T; Casanova F; Hueso LE; Polini M; Hone J; Koppens FH; Hillenbrand R
    Nat Nanotechnol; 2017 Jan; 12(1):31-35. PubMed ID: 27775727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Localized surface plasmons in vibrating graphene nanodisks.
    Wang W; Li BH; Stassen E; Mortensen NA; Christensen J
    Nanoscale; 2016 Feb; 8(6):3809-15. PubMed ID: 26815600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlling graphene plasmons with a zero-index metasurface.
    Lin L; Lu Y; Yuan M; Shi F; Xu H; Chen Y
    Nanoscale; 2017 Nov; 9(46):18482-18489. PubMed ID: 29160326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrical Detection of Single Graphene Plasmons.
    Yu R; García de Abajo FJ
    ACS Nano; 2016 Aug; 10(8):8045-53. PubMed ID: 27472914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly confined low-loss plasmons in graphene-boron nitride heterostructures.
    Woessner A; Lundeberg MB; Gao Y; Principi A; Alonso-González P; Carrega M; Watanabe K; Taniguchi T; Vignale G; Polini M; Hone J; Hillenbrand R; Koppens FH
    Nat Mater; 2015 Apr; 14(4):421-5. PubMed ID: 25532073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns.
    Alonso-González P; Nikitin AY; Golmar F; Centeno A; Pesquera A; Vélez S; Chen J; Navickaite G; Koppens F; Zurutuza A; Casanova F; Hueso LE; Hillenbrand R
    Science; 2014 Jun; 344(6190):1369-73. PubMed ID: 24855026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Local and nonlocal optically induced transparency effects in graphene-silicon hybrid nanophotonic integrated circuits.
    Yu L; Zheng J; Xu Y; Dai D; He S
    ACS Nano; 2014 Nov; 8(11):11386-93. PubMed ID: 25372937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Terahertz surface plasmons in optically pumped graphene structures.
    Dubinov AA; Aleshkin VY; Mitin V; Otsuji T; Ryzhii V
    J Phys Condens Matter; 2011 Apr; 23(14):145302. PubMed ID: 21441654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic spontaneous emission control of an optical emitter coupled to plasmons in strained graphene.
    Ma Z; Cai W; Xiang Y; Ren M; Zhang X; Xu J
    Opt Express; 2017 Sep; 25(19):23070-23081. PubMed ID: 29041611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatiotemporally Controlled Multiplexed Photothermal Microfluidic Pumping under Monitoring of On-Chip Thermal Imaging.
    Fu G; Zhu Y; Wang W; Zhou M; Li X
    ACS Sens; 2019 Sep; 4(9):2481-2490. PubMed ID: 31452364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmonics in Atomically Thin Crystalline Silver Films.
    Abd El-Fattah ZM; Mkhitaryan V; Brede J; Fernández L; Li C; Guo Q; Ghosh A; Echarri AR; Naveh D; Xia F; Ortega JE; García de Abajo FJ
    ACS Nano; 2019 Jul; 13(7):7771-7779. PubMed ID: 31188552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlinear Graphene Nanoplasmonics.
    Cox JD; García de Abajo FJ
    Acc Chem Res; 2019 Sep; 52(9):2536-2547. PubMed ID: 31448890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photothermal Sensing of Nano-Devices Made of Graphene Materials.
    Lu X; Yang L; Yang Z
    Sensors (Basel); 2020 Jun; 20(13):. PubMed ID: 32630009
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mesoporous Carbon Nanospheres as a Multifunctional Carrier for Cancer Theranostics.
    Zhou L; Jing Y; Liu Y; Liu Z; Gao D; Chen H; Song W; Wang T; Fang X; Qin W; Yuan Z; Dai S; Qiao ZA; Wu C
    Theranostics; 2018; 8(3):663-675. PubMed ID: 29344297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering of new graphene-based materials as potential materials to assist near-infrared photothermal therapy cancer treatment.
    Cheung F
    Heliyon; 2020 Jun; 6(6):e04131. PubMed ID: 32566781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-Plasmon Thermo-Optical Switching in Graphene.
    Cox JD; García de Abajo FJ
    Nano Lett; 2019 Jun; 19(6):3743-3750. PubMed ID: 31117754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reinforcing nanomedicine using graphene family nanomaterials.
    Jaleel JA; Sruthi S; Pramod K
    J Control Release; 2017 Jun; 255():218-230. PubMed ID: 28461100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.