BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 30118476)

  • 1. The role of curvature feedback in the energetics and dynamics of lamprey swimming: A closed-loop model.
    Hamlet CL; Hoffman KA; Tytell ED; Fauci LJ
    PLoS Comput Biol; 2018 Aug; 14(8):e1006324. PubMed ID: 30118476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activity-dependent modulation of adaptation produces a constant burst proportion in a model of the lamprey spinal locomotor generator.
    Ullström M; Kotaleski JH; Tegnér J; Aurell E; Grillner S; Lansner A
    Biol Cybern; 1998 Jul; 79(1):1-14. PubMed ID: 9742673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simple models for excitable and oscillatory neural networks.
    Taylor D; Holmes P
    J Math Biol; 1998 Nov; 37(5):419-46. PubMed ID: 9836466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions between muscle activation, body curvature and the water in the swimming lamprey.
    Williams TL; Bowtell G; Carling JC; Sigvardt KA; Curtin NA
    Symp Soc Exp Biol; 1995; 49():49-59. PubMed ID: 8571235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elimination of Left-Right Reciprocal Coupling in the Adult Lamprey Spinal Cord Abolishes the Generation of Locomotor Activity.
    Messina JA; St Paul A; Hargis S; Thompson WE; McClellan AD
    Front Neural Circuits; 2017; 11():89. PubMed ID: 29225569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanosensory inputs to the central pattern generators for locomotion in the lamprey spinal cord: resetting, entrainment, and computer modeling.
    McClellan AD; Jang W
    J Neurophysiol; 1993 Dec; 70(6):2442-54. PubMed ID: 8120592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulations of neuromuscular control in lamprey swimming.
    Ekeberg O; Grillner S
    Philos Trans R Soc Lond B Biol Sci; 1999 May; 354(1385):895-902. PubMed ID: 10382223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of intrinsic muscular nonlinearities on the energetics of locomotion in a computational model of an anguilliform swimmer.
    Hamlet C; Fauci LJ; Tytell ED
    J Theor Biol; 2015 Nov; 385():119-29. PubMed ID: 26362101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural mechanisms potentially contributing to the intersegmental phase lag in lamprey.I. Segmental oscillations dependent on reciprocal inhibition.
    Kotaleski JH; Grillner S; Lansner A
    Biol Cybern; 1999 Oct; 81(4):317-30. PubMed ID: 10541935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flexibility in the patterning and control of axial locomotor networks in lamprey.
    Buchanan JT
    Integr Comp Biol; 2011 Dec; 51(6):869-78. PubMed ID: 21743089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Swimming rhythm generation in the caudal hindbrain of the lamprey.
    Buchanan JT
    J Neurophysiol; 2018 May; 119(5):1681-1692. PubMed ID: 29364070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Different forms of locomotion in the spinal lamprey.
    Hsu LJ; Orlovsky GN; Zelenin PV
    Eur J Neurosci; 2014 Jun; 39(12):2037-49. PubMed ID: 24641591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions between internal forces, body stiffness, and fluid environment in a neuromechanical model of lamprey swimming.
    Tytell ED; Hsu CY; Williams TL; Cohen AH; Fauci LJ
    Proc Natl Acad Sci U S A; 2010 Nov; 107(46):19832-7. PubMed ID: 21037110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mathematical analysis and simulations of the neural circuit for locomotion in lampreys.
    Zhaoping L; Lewis A; Scarpetta S
    Phys Rev Lett; 2004 May; 92(19):198106. PubMed ID: 15169452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling of intersegmental coordination in the lamprey central pattern generator for locomotion.
    Cohen AH; Ermentrout GB; Kiemel T; Kopell N; Sigvardt KA; Williams TL
    Trends Neurosci; 1992 Nov; 15(11):434-8. PubMed ID: 1281350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From lamprey to salamander: an exploratory modeling study on the architecture of the spinal locomotor networks in the salamander.
    Bicanski A; Ryczko D; Cabelguen JM; Ijspeert AJ
    Biol Cybern; 2013 Oct; 107(5):565-87. PubMed ID: 23463500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural mechanisms potentially contributing to the intersegmental phase lag in lamprey.II. Hemisegmental oscillations produced by mutually coupled excitatory neurons.
    Kotaleski JH; Lansner A; Grillner S
    Biol Cybern; 1999 Oct; 81(4):299-315. PubMed ID: 10541934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of oscillator frequency on phase-locking in the lamprey central pattern generator.
    Cohen AH
    J Neurosci Methods; 1987 Oct; 21(2-4):113-25. PubMed ID: 2890796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proprioceptive feedback amplification restores effective locomotion in a neuromechanical model of lampreys with spinal injuries.
    Hamlet C; Fauci L; Morgan JR; Tytell ED
    Proc Natl Acad Sci U S A; 2023 Mar; 120(11):e2213302120. PubMed ID: 36897980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupling of spinal locomotor networks in larval lamprey revealed by receptor blockers for inhibitory amino acids: neurophysiology and computer modeling.
    Hagevik A; McClellan AD
    J Neurophysiol; 1994 Oct; 72(4):1810-29. PubMed ID: 7823103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.