These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 30118738)

  • 1. Regulation of neuronal/axonal degeneration by ZNRF1 ubiquitin ligase.
    Araki T; Wakatsuki S
    Neurosci Res; 2019 Feb; 139():21-25. PubMed ID: 30118738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ZNRF1 promotes Wallerian degeneration by degrading AKT to induce GSK3B-dependent CRMP2 phosphorylation.
    Wakatsuki S; Saitoh F; Araki T
    Nat Cell Biol; 2011 Nov; 13(12):1415-23. PubMed ID: 22057101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidative stress-dependent phosphorylation activates ZNRF1 to induce neuronal/axonal degeneration.
    Wakatsuki S; Furuno A; Ohshima M; Araki T
    J Cell Biol; 2015 Nov; 211(4):881-96. PubMed ID: 26572622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Programmed axon death, synaptic dysfunction and the ubiquitin proteasome system.
    Coleman MP; Ribchester RR
    Curr Drug Targets CNS Neurol Disord; 2004 Jun; 3(3):227-38. PubMed ID: 15180483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Atypical SCF-like Ubiquitin Ligase Complex Promotes Wallerian Degeneration through Regulation of Axonal Nmnat2.
    Yamagishi Y; Tessier-Lavigne M
    Cell Rep; 2016 Oct; 17(3):774-782. PubMed ID: 27732853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NADPH oxidases promote apoptosis by activating ZNRF1 ubiquitin ligase in neurons treated with an exogenously applied oxidant.
    Wakatsuki S; Araki T
    Commun Integr Biol; 2016; 9(2):e1143575. PubMed ID: 27195063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural insights into the nanomolar affinity of RING E3 ligase ZNRF1 for Ube2N and its functional implications.
    Behera AP; Naskar P; Agarwal S; Banka PA; Poddar A; Datta AB
    Biochem J; 2018 May; 475(9):1569-1582. PubMed ID: 29626159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GSK3B-mediated phosphorylation of MCL1 regulates axonal autophagy to promote Wallerian degeneration.
    Wakatsuki S; Tokunaga S; Shibata M; Araki T
    J Cell Biol; 2017 Feb; 216(2):477-493. PubMed ID: 28053206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The slow Wallerian degeneration gene, WldS, inhibits axonal spheroid pathology in gracile axonal dystrophy mice.
    Mi W; Beirowski B; Gillingwater TH; Adalbert R; Wagner D; Grumme D; Osaka H; Conforti L; Arnhold S; Addicks K; Wada K; Ribchester RR; Coleman MP
    Brain; 2005 Feb; 128(Pt 2):405-16. PubMed ID: 15644421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteomic and histochemical analysis of proteins involved in the dying-back-type of axonal degeneration in the gracile axonal dystrophy (gad) mouse.
    Goto A; Wang YL; Kabuta T; Setsuie R; Osaka H; Sawa A; Ishiura S; Wada K
    Neurochem Int; 2009; 54(5-6):330-8. PubMed ID: 19154771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Highwire ubiquitin ligase promotes axonal degeneration by tuning levels of Nmnat protein.
    Xiong X; Hao Y; Sun K; Li J; Li X; Mishra B; Soppina P; Wu C; Hume RI; Collins CA
    PLoS Biol; 2012; 10(12):e1001440. PubMed ID: 23226106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic aspects of neuronal degeneration: From a NAD
    Sasaki Y
    Neurosci Res; 2019 Feb; 139():9-20. PubMed ID: 30006197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Axon death signalling in Wallerian degeneration among species and in disease.
    Llobet Rosell A; Neukomm LJ
    Open Biol; 2019 Aug; 9(8):190118. PubMed ID: 31455157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of Wallerian degeneration and nerve growth factor withdrawal-induced pruning of axons of sympathetic neurons by the proteasome and the MEK/Erk pathway.
    MacInnis BL; Campenot RB
    Mol Cell Neurosci; 2005 Mar; 28(3):430-9. PubMed ID: 15737734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular mechanisms in the initiation phase of Wallerian degeneration.
    Chang B; Quan Q; Lu S; Wang Y; Peng J
    Eur J Neurosci; 2016 Aug; 44(4):2040-8. PubMed ID: 27062141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of the ubiquitin-proteasome system in the early stages of wallerian degeneration.
    Zhai Q; Wang J; Kim A; Liu Q; Watts R; Hoopfer E; Mitchison T; Luo L; He Z
    Neuron; 2003 Jul; 39(2):217-25. PubMed ID: 12873380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ZNRF proteins constitute a family of presynaptic E3 ubiquitin ligases.
    Araki T; Milbrandt J
    J Neurosci; 2003 Oct; 23(28):9385-94. PubMed ID: 14561866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteasomal degradation of glutamine synthetase regulates schwann cell differentiation.
    Saitoh F; Araki T
    J Neurosci; 2010 Jan; 30(4):1204-12. PubMed ID: 20107048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modified cell cycle status in a mouse model of altered neuronal vulnerability (slow Wallerian degeneration; Wlds).
    Wishart TM; Pemberton HN; James SR; McCabe CJ; Gillingwater TH
    Genome Biol; 2008; 9(6):R101. PubMed ID: 18570652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deconstructing the axon: Wallerian degeneration and the ubiquitin-proteasome system.
    Ehlers MD
    Trends Neurosci; 2004 Jan; 27(1):3-6. PubMed ID: 14698600
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.