These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 301188)

  • 41. Tension development in highly stretched vertebrate muscle fibres.
    Gordon AM; Huxley AF; Julian FJ
    J Physiol; 1966 May; 184(1):143-69. PubMed ID: 5921535
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Stepwise shortening in unstimulated frog skeletal muscle fibres.
    Granzier HL; Pollack GH
    J Physiol; 1985 May; 362():173-88. PubMed ID: 3874953
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The relation between stiffness and filament overlap in stimulated frog muscle fibres.
    Ford LE; Huxley AF; Simmons RM
    J Physiol; 1981 Feb; 311():219-49. PubMed ID: 6973625
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The variation in isometric tension with sarcomere length in vertebrate muscle fibres.
    Gordon AM; Huxley AF; Julian FJ
    J Physiol; 1966 May; 184(1):170-92. PubMed ID: 5921536
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Shortening of muscle fibres during stretch of the active cat medial gastrocnemius muscle: the role of tendon compliance.
    Griffiths RI
    J Physiol; 1991 May; 436():219-36. PubMed ID: 2061831
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Movements of cross-bridges during and after slow length changes in active frog skeletal muscle.
    Matsubara I; Yagi N
    J Physiol; 1985 Apr; 361():151-63. PubMed ID: 3872939
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Changes in intracellular Ca2+ induced by shortening imposed during tetanic contractions.
    Cecchi G; Griffiths PJ; Taylor S
    Adv Exp Med Biol; 1984; 170():455-72. PubMed ID: 6611029
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Additional force during stretch of single frog muscle fibres following tetanus.
    Kilgore JB; Mobley BA
    Exp Physiol; 1991 Jul; 76(4):579-88. PubMed ID: 1910766
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Depression of mechanical performance by active shortening during twitch and tetanus of vertebrate muscle fibres.
    Edman KA
    Acta Physiol Scand; 1980 May; 109(1):15-26. PubMed ID: 6969530
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Chemical change, production of tension and energy following stretch of active muscle of frog.
    Curtin NA; Woledge RC
    J Physiol; 1979 Dec; 297(0):539-50. PubMed ID: 317107
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Stimulation rate, potentiators, and sarcomere length-tension relationship of muscle.
    Rome LC; Morgan DL; Julian FJ
    Am J Physiol; 1985 Nov; 249(5 Pt 1):C497-502. PubMed ID: 3877467
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The tension response to stretch of intact skeletal muscle fibres of the frog at varied tonicity of the extracellular medium.
    Månsson A
    J Muscle Res Cell Motil; 1994 Apr; 15(2):145-57. PubMed ID: 8051288
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Influence of sarcomere length, tonicity, and external sodium concentration on conduction velocity in frog muscle fibres.
    Oetliker H; Schümperli RA
    J Physiol; 1982 Nov; 332():203-21. PubMed ID: 6984073
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Potassium contractures in single muscle fibres of the crayfish.
    Zachar J; Zacharová D
    J Physiol; 1966 Oct; 186(3):596-618. PubMed ID: 5972155
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Myofibrillar fatigue versus failure of activation during repetitive stimulation of frog muscle fibres.
    Edman KA; Lou F
    J Physiol; 1992 Nov; 457():655-73. PubMed ID: 1297847
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Force-length relation of isometric sarcomeres in fixed-end tetani.
    Horowitz A; Pollack GH
    Am J Physiol; 1993 Jan; 264(1 Pt 1):C19-26. PubMed ID: 8430767
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Transient phases of the isometric tetanus in Frog's striated muscle.
    Mittenthal JE; Carlson FD
    J Gen Physiol; 1971 Jul; 58(1):20-35. PubMed ID: 5564760
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Short-range elasticity after tetanic stimulation in single muscle fibres of the frog.
    Haugen P
    Acta Physiol Scand; 1982 Apr; 114(4):487-95. PubMed ID: 6982599
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Force-velocity relation in normal and nitrate-treated frog single muscle fibres during rise of tension in an isometric tetanus.
    Cecchi G; Colomo F; Lombardi V
    J Physiol; 1978 Dec; 285():257-73. PubMed ID: 311382
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The passive electrical properties of frog skeletal muscle fibres at different sarcomere lengths.
    Dulhunty AF; Franzini-Armstrong C
    J Physiol; 1977 Apr; 266(3):687-711. PubMed ID: 301189
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.