These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1319 related articles for article (PubMed ID: 30118855)
1. Risk prediction using natural language processing of electronic mental health records in an inpatient forensic psychiatry setting. Le DV; Montgomery J; Kirkby KC; Scanlan J J Biomed Inform; 2018 Oct; 86():49-58. PubMed ID: 30118855 [TBL] [Abstract][Full Text] [Related]
2. Using Natural Language Processing to Predict Risk in Electronic Health Records. Van Le D; Montgomery J; Kirkby K; Scanlan J Stud Health Technol Inform; 2024 Jan; 310():574-578. PubMed ID: 38269874 [TBL] [Abstract][Full Text] [Related]
3. A comparison of word embeddings for the biomedical natural language processing. Wang Y; Liu S; Afzal N; Rastegar-Mojarad M; Wang L; Shen F; Kingsbury P; Liu H J Biomed Inform; 2018 Nov; 87():12-20. PubMed ID: 30217670 [TBL] [Abstract][Full Text] [Related]
4. Using natural language processing and machine learning to identify breast cancer local recurrence. Zeng Z; Espino S; Roy A; Li X; Khan SA; Clare SE; Jiang X; Neapolitan R; Luo Y BMC Bioinformatics; 2018 Dec; 19(Suppl 17):498. PubMed ID: 30591037 [TBL] [Abstract][Full Text] [Related]
5. Development and evaluation of RapTAT: a machine learning system for concept mapping of phrases from medical narratives. Gobbel GT; Reeves R; Jayaramaraja S; Giuse D; Speroff T; Brown SH; Elkin PL; Matheny ME J Biomed Inform; 2014 Apr; 48():54-65. PubMed ID: 24316051 [TBL] [Abstract][Full Text] [Related]
6. Medical subdomain classification of clinical notes using a machine learning-based natural language processing approach. Weng WH; Wagholikar KB; McCray AT; Szolovits P; Chueh HC BMC Med Inform Decis Mak; 2017 Dec; 17(1):155. PubMed ID: 29191207 [TBL] [Abstract][Full Text] [Related]
7. Natural language processing of symptoms documented in free-text narratives of electronic health records: a systematic review. Koleck TA; Dreisbach C; Bourne PE; Bakken S J Am Med Inform Assoc; 2019 Apr; 26(4):364-379. PubMed ID: 30726935 [TBL] [Abstract][Full Text] [Related]
8. Identifying Goals of Care Conversations in the Electronic Health Record Using Natural Language Processing and Machine Learning. Lee RY; Brumback LC; Lober WB; Sibley J; Nielsen EL; Treece PD; Kross EK; Loggers ET; Fausto JA; Lindvall C; Engelberg RA; Curtis JR J Pain Symptom Manage; 2021 Jan; 61(1):136-142.e2. PubMed ID: 32858164 [TBL] [Abstract][Full Text] [Related]
9. Automated feature selection of predictors in electronic medical records data. Gronsbell J; Minnier J; Yu S; Liao K; Cai T Biometrics; 2019 Mar; 75(1):268-277. PubMed ID: 30353541 [TBL] [Abstract][Full Text] [Related]
10. Machine learning in medicine: a practical introduction to natural language processing. Harrison CJ; Sidey-Gibbons CJ BMC Med Res Methodol; 2021 Jul; 21(1):158. PubMed ID: 34332525 [TBL] [Abstract][Full Text] [Related]
11. Natural language processing with machine learning methods to analyze unstructured patient-reported outcomes derived from electronic health records: A systematic review. Sim JA; Huang X; Horan MR; Stewart CM; Robison LL; Hudson MM; Baker JN; Huang IC Artif Intell Med; 2023 Dec; 146():102701. PubMed ID: 38042599 [TBL] [Abstract][Full Text] [Related]
12. Leveraging Natural Language Processing to Improve Electronic Health Record Suicide Risk Prediction for Veterans Health Administration Users. Levis M; Levy J; Dent KR; Dufort V; Gobbel GT; Watts BV; Shiner B J Clin Psychiatry; 2023 Jun; 84(4):. PubMed ID: 37341477 [No Abstract] [Full Text] [Related]
13. Using natural language processing to identify opioid use disorder in electronic health record data. Singleton J; Li C; Akpunonu PD; Abner EL; Kucharska-Newton AM Int J Med Inform; 2023 Feb; 170():104963. PubMed ID: 36521420 [TBL] [Abstract][Full Text] [Related]
14. Using Clinical Notes and Natural Language Processing for Automated HIV Risk Assessment. Feller DJ; Zucker J; Yin MT; Gordon P; Elhadad N J Acquir Immune Defic Syndr; 2018 Feb; 77(2):160-166. PubMed ID: 29084046 [TBL] [Abstract][Full Text] [Related]
15. Publicly available machine learning models for identifying opioid misuse from the clinical notes of hospitalized patients. Sharma B; Dligach D; Swope K; Salisbury-Afshar E; Karnik NS; Joyce C; Afshar M BMC Med Inform Decis Mak; 2020 Apr; 20(1):79. PubMed ID: 32349766 [TBL] [Abstract][Full Text] [Related]
16. Natural language processing and machine learning to enable automatic extraction and classification of patients' smoking status from electronic medical records. Caccamisi A; Jørgensen L; Dalianis H; Rosenlund M Ups J Med Sci; 2020 Nov; 125(4):316-324. PubMed ID: 32696698 [TBL] [Abstract][Full Text] [Related]
17. Examination of the predictive validity of the Dynamic Appraisal of Situational Aggression in two mental health units. Griffith JJ; Daffern M; Godber T Int J Ment Health Nurs; 2013 Dec; 22(6):485-92. PubMed ID: 23363378 [TBL] [Abstract][Full Text] [Related]
18. The Value of Unstructured Electronic Health Record Data in Geriatric Syndrome Case Identification. Kharrazi H; Anzaldi LJ; Hernandez L; Davison A; Boyd CM; Leff B; Kimura J; Weiner JP J Am Geriatr Soc; 2018 Aug; 66(8):1499-1507. PubMed ID: 29972595 [TBL] [Abstract][Full Text] [Related]
19. A UMLS-based spell checker for natural language processing in vaccine safety. Tolentino HD; Matters MD; Walop W; Law B; Tong W; Liu F; Fontelo P; Kohl K; Payne DC BMC Med Inform Decis Mak; 2007 Feb; 7():3. PubMed ID: 17295907 [TBL] [Abstract][Full Text] [Related]
20. Using natural language processing to identify problem usage of prescription opioids. Carrell DS; Cronkite D; Palmer RE; Saunders K; Gross DE; Masters ET; Hylan TR; Von Korff M Int J Med Inform; 2015 Dec; 84(12):1057-64. PubMed ID: 26456569 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]