These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1342 related articles for article (PubMed ID: 30118855)

  • 21. Novel Use of Natural Language Processing (NLP) to Predict Suicidal Ideation and Psychiatric Symptoms in a Text-Based Mental Health Intervention in Madrid.
    Cook BL; Progovac AM; Chen P; Mullin B; Hou S; Baca-Garcia E
    Comput Math Methods Med; 2016; 2016():8708434. PubMed ID: 27752278
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Growing Impact of Natural Language Processing in Healthcare and Public Health.
    Jerfy A; Selden O; Balkrishnan R
    Inquiry; 2024; 61():469580241290095. PubMed ID: 39396164
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Augmented intelligence with natural language processing applied to electronic health records for identifying patients with non-alcoholic fatty liver disease at risk for disease progression.
    Van Vleck TT; Chan L; Coca SG; Craven CK; Do R; Ellis SB; Kannry JL; Loos RJF; Bonis PA; Cho J; Nadkarni GN
    Int J Med Inform; 2019 Sep; 129():334-341. PubMed ID: 31445275
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Susceptibility (risk and protective) factors for in-patient violence and self-harm: prospective study of structured professional judgement instruments START and SAPROF, DUNDRUM-3 and DUNDRUM-4 in forensic mental health services.
    Abidin Z; Davoren M; Naughton L; Gibbons O; Nulty A; Kennedy HG
    BMC Psychiatry; 2013 Jul; 13():197. PubMed ID: 23890106
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Scaling-up NLP Pipelines to Process Large Corpora of Clinical Notes.
    Divita G; Carter M; Redd A; Zeng Q; Gupta K; Trautner B; Samore M; Gundlapalli A
    Methods Inf Med; 2015; 54(6):548-52. PubMed ID: 26534722
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Artificial Intelligence Learning Semantics via External Resources for Classifying Diagnosis Codes in Discharge Notes.
    Lin C; Hsu CJ; Lou YS; Yeh SJ; Lee CC; Su SL; Chen HC
    J Med Internet Res; 2017 Nov; 19(11):e380. PubMed ID: 29109070
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Automation of penicillin adverse drug reaction categorisation and risk stratification with machine learning natural language processing.
    Inglis JM; Bacchi S; Troelnikov A; Smith W; Shakib S
    Int J Med Inform; 2021 Dec; 156():104611. PubMed ID: 34653809
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prediction of severe chest injury using natural language processing from the electronic health record.
    Kulshrestha S; Dligach D; Joyce C; Baker MS; Gonzalez R; O'Rourke AP; Glazer JM; Stey A; Kruser JM; Churpek MM; Afshar M
    Injury; 2021 Feb; 52(2):205-212. PubMed ID: 33131794
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Machine learning in medicine: a practical introduction to natural language processing.
    Harrison CJ; Sidey-Gibbons CJ
    BMC Med Res Methodol; 2021 Jul; 21(1):158. PubMed ID: 34332525
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of a natural language processing algorithm to detect chronic cough in electronic health records.
    Bali V; Weaver J; Turzhitsky V; Schelfhout J; Paudel ML; Hulbert E; Peterson-Brandt J; Currie AG; Bakka D
    BMC Pulm Med; 2022 Jun; 22(1):256. PubMed ID: 35764999
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Information extraction from free text for aiding transdiagnostic psychiatry: constructing NLP pipelines tailored to clinicians' needs.
    Turner RJ; Coenen F; Roelofs F; Hagoort K; Härmä A; Grünwald PD; Velders FP; Scheepers FE
    BMC Psychiatry; 2022 Jun; 22(1):407. PubMed ID: 35715745
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prediction task guided representation learning of medical codes in EHR.
    Cui L; Xie X; Shen Z
    J Biomed Inform; 2018 Aug; 84():1-10. PubMed ID: 29928997
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Validation of an alcohol misuse classifier in hospitalized patients.
    To D; Sharma B; Karnik N; Joyce C; Dligach D; Afshar M
    Alcohol; 2020 May; 84():49-55. PubMed ID: 31574300
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Integrating Natural Language Processing and Machine Learning Algorithms to Categorize Oncologic Response in Radiology Reports.
    Chen PH; Zafar H; Galperin-Aizenberg M; Cook T
    J Digit Imaging; 2018 Apr; 31(2):178-184. PubMed ID: 29079959
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Machine Learning and Natural Language Processing in Mental Health: Systematic Review.
    Le Glaz A; Haralambous Y; Kim-Dufor DH; Lenca P; Billot R; Ryan TC; Marsh J; DeVylder J; Walter M; Berrouiguet S; Lemey C
    J Med Internet Res; 2021 May; 23(5):e15708. PubMed ID: 33944788
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Natural language processing of clinical mental health notes may add predictive value to existing suicide risk models.
    Levis M; Leonard Westgate C; Gui J; Watts BV; Shiner B
    Psychol Med; 2021 Jun; 51(8):1382-1391. PubMed ID: 32063248
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assessing risk for aggression in forensic psychiatric inpatients: An examination of five measures.
    Hogan NR; Olver ME
    Law Hum Behav; 2016 Jun; 40(3):233-43. PubMed ID: 26828708
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Automated chart review utilizing natural language processing algorithm for asthma predictive index.
    Kaur H; Sohn S; Wi CI; Ryu E; Park MA; Bachman K; Kita H; Croghan I; Castro-Rodriguez JA; Voge GA; Liu H; Juhn YJ
    BMC Pulm Med; 2018 Feb; 18(1):34. PubMed ID: 29439692
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mixed-methods evaluation of three natural language processing modeling approaches for measuring documented goals-of-care discussions in the electronic health record.
    Uyeda AM; Curtis JR; Engelberg RA; Brumback LC; Guo Y; Sibley J; Lober WB; Cohen T; Torrence J; Heywood J; Paul SR; Kross EK; Lee RY
    J Pain Symptom Manage; 2022 Jun; 63(6):e713-e723. PubMed ID: 35182715
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development and application of a high throughput natural language processing architecture to convert all clinical documents in a clinical data warehouse into standardized medical vocabularies.
    Afshar M; Dligach D; Sharma B; Cai X; Boyda J; Birch S; Valdez D; Zelisko S; Joyce C; Modave F; Price R
    J Am Med Inform Assoc; 2019 Nov; 26(11):1364-1369. PubMed ID: 31145455
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 68.