These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 30118951)
1. Stochastic evaluation of Salmonella enterica lethality during thermal inactivation. Abe H; Koyama K; Kawamura S; Koseki S Int J Food Microbiol; 2018 Nov; 285():129-135. PubMed ID: 30118951 [TBL] [Abstract][Full Text] [Related]
2. Modeling Stochastic Variability in the Numbers of Surviving Salmonella enterica, Enterohemorrhagic Escherichia coli, and Listeria monocytogenes Cells at the Single-Cell Level in a Desiccated Environment. Koyama K; Hokunan H; Hasegawa M; Kawamura S; Koseki S Appl Environ Microbiol; 2017 Feb; 83(4):. PubMed ID: 27940547 [TBL] [Abstract][Full Text] [Related]
3. Estimation of the probability of bacterial population survival: Development of a probability model to describe the variability in time to inactivation of Salmonella enterica. Koyama K; Hokunan H; Hasegawa M; Kawamura S; Koseki S Food Microbiol; 2017 Dec; 68():121-128. PubMed ID: 28800819 [TBL] [Abstract][Full Text] [Related]
4. Stochastic modeling of variability in survival behavior of Bacillus simplex spore population during isothermal inactivation at the single cell level using a Monte Carlo simulation. Abe H; Koyama K; Kawamura S; Koseki S Food Microbiol; 2019 Sep; 82():436-444. PubMed ID: 31027803 [TBL] [Abstract][Full Text] [Related]
5. Heterogeneity of single cell inactivation: Assessment of the individual cell time to death and implications in population behavior. Aspridou Z; Balomenos A; Tsakanikas P; Manolakos E; Koutsoumanis K Food Microbiol; 2019 Jun; 80():85-92. PubMed ID: 30704600 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of the strain variability of Salmonella enterica acid and heat resistance. Lianou A; Koutsoumanis KP Food Microbiol; 2013 Jun; 34(2):259-67. PubMed ID: 23541192 [TBL] [Abstract][Full Text] [Related]
7. Individual cell heterogeneity as variability source in population dynamics of microbial inactivation. Aspridou Z; Koutsoumanis KP Food Microbiol; 2015 Feb; 45(Pt B):216-21. PubMed ID: 25500387 [TBL] [Abstract][Full Text] [Related]
8. Thermal inactivation and sublethal injury kinetics of Salmonella enterica and Listeria monocytogenes in broth versus agar surface. Wang X; Devlieghere F; Geeraerd A; Uyttendaele M Int J Food Microbiol; 2017 Feb; 243():70-77. PubMed ID: 28011300 [TBL] [Abstract][Full Text] [Related]
9. A stochastic approach for integrating strain variability in modeling Salmonella enterica growth as a function of pH and water activity. Lianou A; Koutsoumanis KP Int J Food Microbiol; 2011 Oct; 149(3):254-61. PubMed ID: 21794942 [TBL] [Abstract][Full Text] [Related]
10. Kinetics model comparison for the inactivation of Salmonella serotypes Enteritidis and Oranienburg in 10% salted liquid whole egg. Gurtler JB; Marks HM; Bailey RB; Juneja V; Jones DR Foodborne Pathog Dis; 2013 Jun; 10(6):492-9. PubMed ID: 23763579 [TBL] [Abstract][Full Text] [Related]
11. Thermal inactivation kinetics of Salmonella enterica and Enterococcus faecium NRRL B-2354 as a function of temperature and water activity in fine ground black pepper. Wason S; Verma T; Wei X; Mauromoustakos A; Subbiah J Food Res Int; 2022 Jul; 157():111393. PubMed ID: 35761648 [TBL] [Abstract][Full Text] [Related]
12. Influence of water activity on the heat resistance of Salmonella enterica in selected low-moisture foods. Gautam B; Govindan BN; Gӓnzle M; Roopesh MS Int J Food Microbiol; 2020 Dec; 334():108813. PubMed ID: 32841809 [TBL] [Abstract][Full Text] [Related]
13. A mathematical model of inactivation kinetics for a four-strain composite of Salmonella Enteritidis and Oranienburg in commercial liquid egg yolk. Jordan JS; Gurtler JB; Marks HM; Jones DR; Shaw WK Food Microbiol; 2011 Feb; 28(1):67-75. PubMed ID: 21056777 [TBL] [Abstract][Full Text] [Related]
14. Transforming kinetic model into a stochastic inactivation model: Statistical evaluation of stochastic inactivation of individual cells in a bacterial population. Hiura S; Abe H; Koyama K; Koseki S Food Microbiol; 2020 Oct; 91():103508. PubMed ID: 32539982 [TBL] [Abstract][Full Text] [Related]
15. The probability of bacterial spores surviving a thermal process: The 12D myth and other issues with its quantitative assessment. Peleg M Crit Rev Food Sci Nutr; 2024; 64(15):5161-5175. PubMed ID: 36476053 [TBL] [Abstract][Full Text] [Related]
16. Individual and combined efficacies of mild heat and ultraviolet-c radiation against Escherichia coli O157:H7, Salmonella enterica, and Listeria monocytogenes in coconut liquid endosperm. Gabriel AA; Ostonal JM; Cristobal JO; Pagal GA; Armada JVE Int J Food Microbiol; 2018 Jul; 277():64-73. PubMed ID: 29684767 [TBL] [Abstract][Full Text] [Related]
17. Modeling the long-term kinetics of Salmonella survival on dry pet food. Lambertini E; Mishra A; Guo M; Cao H; Buchanan RL; Pradhan AK Food Microbiol; 2016 Sep; 58():1-6. PubMed ID: 27217351 [TBL] [Abstract][Full Text] [Related]
18. A Comparison of Three Methods for Determining Thermal Inactivation Kinetics: A Case Study on Salmonella enterica in Whole Milk Powder. Lau SK; Wei X; Kirezi N; Panth R; See A; Subbiah J J Food Prot; 2021 Mar; 84(3):521-530. PubMed ID: 33159446 [TBL] [Abstract][Full Text] [Related]
19. Calculating stochastic inactivation of individual cells in a bacterial population using variability in individual cell inactivation time and initial cell number. Koyama K; Abe H; Kawamura S; Koseki S J Theor Biol; 2019 May; 469():172-179. PubMed ID: 30831174 [TBL] [Abstract][Full Text] [Related]
20. Thermal Inactivation of Salmonella Agona in Low-Water Activity Foods: Predictive Models for the Combined Effect of Temperature, Water Activity, and Food Component. Jin Y; Pickens SR; Hildebrandt IM; Burbick SJ; Grasso-Kelley EM; Keller SE; Anderson NM J Food Prot; 2018 Sep; 81(9):1411-1417. PubMed ID: 30059253 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]