BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 30118951)

  • 1. Stochastic evaluation of Salmonella enterica lethality during thermal inactivation.
    Abe H; Koyama K; Kawamura S; Koseki S
    Int J Food Microbiol; 2018 Nov; 285():129-135. PubMed ID: 30118951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling Stochastic Variability in the Numbers of Surviving Salmonella enterica, Enterohemorrhagic Escherichia coli, and Listeria monocytogenes Cells at the Single-Cell Level in a Desiccated Environment.
    Koyama K; Hokunan H; Hasegawa M; Kawamura S; Koseki S
    Appl Environ Microbiol; 2017 Feb; 83(4):. PubMed ID: 27940547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of the probability of bacterial population survival: Development of a probability model to describe the variability in time to inactivation of Salmonella enterica.
    Koyama K; Hokunan H; Hasegawa M; Kawamura S; Koseki S
    Food Microbiol; 2017 Dec; 68():121-128. PubMed ID: 28800819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stochastic modeling of variability in survival behavior of Bacillus simplex spore population during isothermal inactivation at the single cell level using a Monte Carlo simulation.
    Abe H; Koyama K; Kawamura S; Koseki S
    Food Microbiol; 2019 Sep; 82():436-444. PubMed ID: 31027803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterogeneity of single cell inactivation: Assessment of the individual cell time to death and implications in population behavior.
    Aspridou Z; Balomenos A; Tsakanikas P; Manolakos E; Koutsoumanis K
    Food Microbiol; 2019 Jun; 80():85-92. PubMed ID: 30704600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the strain variability of Salmonella enterica acid and heat resistance.
    Lianou A; Koutsoumanis KP
    Food Microbiol; 2013 Jun; 34(2):259-67. PubMed ID: 23541192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Individual cell heterogeneity as variability source in population dynamics of microbial inactivation.
    Aspridou Z; Koutsoumanis KP
    Food Microbiol; 2015 Feb; 45(Pt B):216-21. PubMed ID: 25500387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal inactivation and sublethal injury kinetics of Salmonella enterica and Listeria monocytogenes in broth versus agar surface.
    Wang X; Devlieghere F; Geeraerd A; Uyttendaele M
    Int J Food Microbiol; 2017 Feb; 243():70-77. PubMed ID: 28011300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A stochastic approach for integrating strain variability in modeling Salmonella enterica growth as a function of pH and water activity.
    Lianou A; Koutsoumanis KP
    Int J Food Microbiol; 2011 Oct; 149(3):254-61. PubMed ID: 21794942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics model comparison for the inactivation of Salmonella serotypes Enteritidis and Oranienburg in 10% salted liquid whole egg.
    Gurtler JB; Marks HM; Bailey RB; Juneja V; Jones DR
    Foodborne Pathog Dis; 2013 Jun; 10(6):492-9. PubMed ID: 23763579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal inactivation kinetics of Salmonella enterica and Enterococcus faecium NRRL B-2354 as a function of temperature and water activity in fine ground black pepper.
    Wason S; Verma T; Wei X; Mauromoustakos A; Subbiah J
    Food Res Int; 2022 Jul; 157():111393. PubMed ID: 35761648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of water activity on the heat resistance of Salmonella enterica in selected low-moisture foods.
    Gautam B; Govindan BN; Gӓnzle M; Roopesh MS
    Int J Food Microbiol; 2020 Dec; 334():108813. PubMed ID: 32841809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A mathematical model of inactivation kinetics for a four-strain composite of Salmonella Enteritidis and Oranienburg in commercial liquid egg yolk.
    Jordan JS; Gurtler JB; Marks HM; Jones DR; Shaw WK
    Food Microbiol; 2011 Feb; 28(1):67-75. PubMed ID: 21056777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transforming kinetic model into a stochastic inactivation model: Statistical evaluation of stochastic inactivation of individual cells in a bacterial population.
    Hiura S; Abe H; Koyama K; Koseki S
    Food Microbiol; 2020 Oct; 91():103508. PubMed ID: 32539982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The probability of bacterial spores surviving a thermal process: The 12D myth and other issues with its quantitative assessment.
    Peleg M
    Crit Rev Food Sci Nutr; 2024; 64(15):5161-5175. PubMed ID: 36476053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Individual and combined efficacies of mild heat and ultraviolet-c radiation against Escherichia coli O157:H7, Salmonella enterica, and Listeria monocytogenes in coconut liquid endosperm.
    Gabriel AA; Ostonal JM; Cristobal JO; Pagal GA; Armada JVE
    Int J Food Microbiol; 2018 Jul; 277():64-73. PubMed ID: 29684767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling the long-term kinetics of Salmonella survival on dry pet food.
    Lambertini E; Mishra A; Guo M; Cao H; Buchanan RL; Pradhan AK
    Food Microbiol; 2016 Sep; 58():1-6. PubMed ID: 27217351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Comparison of Three Methods for Determining Thermal Inactivation Kinetics: A Case Study on Salmonella enterica in Whole Milk Powder.
    Lau SK; Wei X; Kirezi N; Panth R; See A; Subbiah J
    J Food Prot; 2021 Mar; 84(3):521-530. PubMed ID: 33159446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calculating stochastic inactivation of individual cells in a bacterial population using variability in individual cell inactivation time and initial cell number.
    Koyama K; Abe H; Kawamura S; Koseki S
    J Theor Biol; 2019 May; 469():172-179. PubMed ID: 30831174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal Inactivation of Salmonella Agona in Low-Water Activity Foods: Predictive Models for the Combined Effect of Temperature, Water Activity, and Food Component.
    Jin Y; Pickens SR; Hildebrandt IM; Burbick SJ; Grasso-Kelley EM; Keller SE; Anderson NM
    J Food Prot; 2018 Sep; 81(9):1411-1417. PubMed ID: 30059253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.