BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 30119016)

  • 21. Hydroxycinnamic acids as DNA-cleaving agents in the presence of Cu(II) ions: mechanism, structure-activity relationship, and biological implications.
    Fan GJ; Jin XL; Qian YP; Wang Q; Yang RT; Dai F; Tang JJ; Shang YJ; Cheng LX; Yang J; Zhou B
    Chemistry; 2009 Nov; 15(46):12889-99. PubMed ID: 19847825
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Site-specific DNA damage induced by NADH in the presence of copper(II): role of active oxygen species.
    Oikawa S; Kawanishi S
    Biochemistry; 1996 Apr; 35(14):4584-90. PubMed ID: 8605209
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Oxidation of Cu(I) in seawater at low oxygen concentrations.
    Pérez-Almeida N; González-Dávila M; Santana-Casiano JM; González AG; Suárez de Tangil M
    Environ Sci Technol; 2013 Feb; 47(3):1239-47. PubMed ID: 23259733
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Probing the mechanism of proton coupled electron transfer to dioxygen: the oxidative half-reaction of bovine serum amine oxidase.
    Su Q; Klinman JP
    Biochemistry; 1998 Sep; 37(36):12513-25. PubMed ID: 9730824
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intramolecular electron transfer rate between active-site copper and TPQ in Arthrobacter globiformis amine oxidase.
    Shepard EM; Dooley DM
    J Biol Inorg Chem; 2006 Nov; 11(8):1039-48. PubMed ID: 16924556
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Menadione-induced reactive oxygen species generation via redox cycling promotes apoptosis of murine pancreatic acinar cells.
    Criddle DN; Gillies S; Baumgartner-Wilson HK; Jaffar M; Chinje EC; Passmore S; Chvanov M; Barrow S; Gerasimenko OV; Tepikin AV; Sutton R; Petersen OH
    J Biol Chem; 2006 Dec; 281(52):40485-92. PubMed ID: 17088248
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis of novel coumarin nucleus-based DPA drug-like molecular entity: In vitro DNA/Cu(II) binding, DNA cleavage and pro-oxidant mechanism for anticancer action.
    Khan S; Malla AM; Zafar A; Naseem I
    PLoS One; 2017; 12(8):e0181783. PubMed ID: 28763458
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Activation of Oxygen and Hydrogen Peroxide by Copper(II) Coupled with Hydroxylamine for Oxidation of Organic Contaminants.
    Lee H; Lee HJ; Seo J; Kim HE; Shin YK; Kim JH; Lee C
    Environ Sci Technol; 2016 Aug; 50(15):8231-8. PubMed ID: 27387011
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A review of the structure, and fundamental mechanisms and kinetics of the leaching of chalcopyrite.
    Li Y; Kawashima N; Li J; Chandra AP; Gerson AR
    Adv Colloid Interface Sci; 2013 Sep; 197-198():1-32. PubMed ID: 23791420
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of Cu/Zn-superoxide dismutase in xenobiotic activation. II. Biological effects resulting from the Cu/Zn-superoxide dismutase-accelerated oxidation of the benzene metabolite 1,4-hydroquinone.
    Li Y; Kuppusamy P; Zweir JL; Trush MA
    Mol Pharmacol; 1996 Mar; 49(3):412-21. PubMed ID: 8643080
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Iron-Mediated Oxidation of Methoxyhydroquinone under Dark Conditions: Kinetic and Mechanistic Insights.
    Yuan X; Davis JA; Nico PS
    Environ Sci Technol; 2016 Feb; 50(4):1731-40. PubMed ID: 26789138
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dynamics of reactive oxygen species generation in the presence of copper(II)-histidine complex and cysteine.
    Ząbek-Adamska A; Drożdż R; Naskalski JW
    Acta Biochim Pol; 2013; 60(4):565-71. PubMed ID: 24340304
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Developing mononuclear copper-active-oxygen complexes relevant to reactive intermediates of biological oxidation reactions.
    Itoh S
    Acc Chem Res; 2015 Jul; 48(7):2066-74. PubMed ID: 26086527
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evidence for the generation of reactive oxygen species from hydroquinone and benzoquinone: Roles in arsenite oxidation.
    Qin W; Wang Y; Fang G; Wu T; Liu C; Zhou D
    Chemosphere; 2016 May; 150():71-78. PubMed ID: 26891359
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanism of Copper/Azodicarboxylate-Catalyzed Aerobic Alcohol Oxidation: Evidence for Uncooperative Catalysis.
    McCann SD; Stahl SS
    J Am Chem Soc; 2016 Jan; 138(1):199-206. PubMed ID: 26694091
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cu(II)-catalyzed transformation of benzylpenicillin revisited: the overlooked oxidation.
    Chen J; Sun P; Zhou X; Zhang Y; Huang CH
    Environ Sci Technol; 2015 Apr; 49(7):4218-25. PubMed ID: 25759948
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cu(II)-enhanced activation of molecular oxygen using Fe(II): Factors affecting the yield of oxidants.
    Chen Y; Feng Y; Chu H; Wu D; Zhang Y
    Chemosphere; 2019 Apr; 221():383-391. PubMed ID: 30648644
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reaction of oxygen with 6-hydroxydopamine catalyzed by Cu, Fe, Mn, and V complexes: identification of a thermodynamic window for effective metal catalysis.
    Bandy B; Walter PB; Moon J; Davison AJ
    Arch Biochem Biophys; 2001 May; 389(1):22-30. PubMed ID: 11370668
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cu(II)-catalyzed oxidation of dopamine in aqueous solutions: mechanism and kinetics.
    Pham AN; Waite TD
    J Inorg Biochem; 2014 Aug; 137():74-84. PubMed ID: 24815905
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Activation of dissolved molecular oxygen by Cu(0) for bisphenol a degradation: Role of Cu(0) and formation of reactive oxygen species.
    Long J; Xu L; Zhao L; Chu H; Mao Y; Wu D
    Chemosphere; 2020 Feb; 241():125034. PubMed ID: 31683430
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.