These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 30119378)

  • 1. Laser direct writing of graphene nanostructures beyond the diffraction limit by graphene oxidation.
    Xu X; Shi B; Zhang X; Liu Y; Cai W; Ren M; Jiang X; Rupp RA; Wu Q; Xu J
    Opt Express; 2018 Aug; 26(16):20726-20734. PubMed ID: 30119378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. One-step direct-laser metal writing of sub-100 nm 3D silver nanostructures in a gelatin matrix.
    Kang S; Vora K; Mazur E
    Nanotechnology; 2015 Mar; 26(12):121001. PubMed ID: 25735874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sub-Diffraction Limited Writing based on Laser Induced Periodic Surface Structures (LIPSS).
    He X; Datta A; Nam W; Traverso LM; Xu X
    Sci Rep; 2016 Oct; 6():35035. PubMed ID: 27721428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward all-carbon electronics: fabrication of graphene-based flexible electronic circuits and memory cards using maskless laser direct writing.
    Liang J; Chen Y; Xu Y; Liu Z; Zhang L; Zhao X; Zhang X; Tian J; Huang Y; Ma Y; Li F
    ACS Appl Mater Interfaces; 2010 Nov; 2(11):3310-7. PubMed ID: 21058687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photo-induced electrodeposition of metallic nanostructures on graphene.
    Xia K; Chiang WY; Lockhart de la Rosa CJ; Fujita Y; Toyouchi S; Yuan H; Su J; Masuhara H; De Gendt S; De Feyter S; Hofkens J; Uji-I H
    Nanoscale; 2020 May; 12(20):11063-11069. PubMed ID: 32400800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maskless Micro/Nanopatterning and Bipolar Electrical Rectification of MoS
    Zuo P; Jiang L; Li X; Tian M; Xu C; Yuan Y; Ran P; Li B; Lu Y
    ACS Appl Mater Interfaces; 2019 Oct; 11(42):39334-39341. PubMed ID: 31552735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TiO2 micro-devices fabricated by laser direct writing.
    Wang Y; Miao J; Tian Y; Guo C; Zhang J; Ren T; Liu Q
    Opt Express; 2011 Aug; 19(18):17390-5. PubMed ID: 21935103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controllable fabrication of super-resolution nanocrater arrays by laser direct writing.
    Wang Y; Guo C; Cao S; Miao J; Ren T; Liu Q
    J Nanosci Nanotechnol; 2010 Nov; 10(11):7134-7. PubMed ID: 21137881
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large-area, freestanding, single-layer graphene-gold: a hybrid plasmonic nanostructure.
    Iyer GR; Wang J; Wells G; Guruvenket S; Payne S; Bradley M; Borondics F
    ACS Nano; 2014 Jun; 8(6):6353-62. PubMed ID: 24860924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabricating Graphene and Nanodiamonds from Lignin by Femtosecond Laser Irradiation.
    Lin Y; Zhang Q; Deng Y; Wu Q; Ye XP; Wang S; Fang G
    ACS Omega; 2021 Dec; 6(49):33995-34002. PubMed ID: 34926947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct laser writing for micro-optical devices using a negative photoresist.
    Tsutsumi N; Hirota J; Kinashi K; Sakai W
    Opt Express; 2017 Dec; 25(25):31539-31551. PubMed ID: 29245828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optically Forged Diffraction-Unlimited Ripples in Graphene.
    Koskinen P; Karppinen K; Myllyperkiö P; Hiltunen VM; Johansson A; Pettersson M
    J Phys Chem Lett; 2018 Nov; 9(21):6179-6184. PubMed ID: 30380894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical nano artifact metrics using silicon random nanostructures.
    Matsumoto T; Yoshida N; Nishio S; Hoga M; Ohyagi Y; Tate N; Naruse M
    Sci Rep; 2016 Aug; 6():32438. PubMed ID: 27578146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct writing of graphene patterns on insulating substrates under ambient conditions.
    Xiong W; Zhou YS; Hou WJ; Jiang LJ; Gao Y; Fan LS; Jiang L; Silvain JF; Lu YF
    Sci Rep; 2014 May; 4():4892. PubMed ID: 24809639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reliable Fabrication of Graphene Nanostructure Based on e-Beam Irradiation of PMMA/Copper Composite Structure.
    Bi K; Mu J; Geng W; Mei L; Zhou S; Niu Y; Fu W; Tan L; Han S; Chou X
    Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34443158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication-resolution enhancement method based on low-energy multiple exposures.
    Wang L; Wang C; Zhang H; Xia F; Wang C; Yang F; Zhang X; Liu Q
    Opt Express; 2015 Nov; 23(23):29353-9. PubMed ID: 26698419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous tuning of electric field intensity and structural properties of ZnO: Graphene nanostructures for FOSPR based nicotine sensor.
    Tabassum R; Gupta BD
    Biosens Bioelectron; 2017 May; 91():762-769. PubMed ID: 28131978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Efficiency Fabrication of Geometric Phase Elements by Femtosecond-Laser Direct Writing.
    Xu S; Fan H; Xu SJ; Li ZZ; Lei Y; Wang L; Song JF
    Nanomaterials (Basel); 2020 Sep; 10(9):. PubMed ID: 32882954
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast and controllable fabrication of suspended graphene nanopore devices.
    Liu S; Zhao Q; Xu J; Yan K; Peng H; Yang F; You L; Yu D
    Nanotechnology; 2012 Mar; 23(8):085301. PubMed ID: 22293107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphene Metapixels for Dynamically Switchable Structural Color.
    Hu Q; Lin KT; Lin H; Zhang Y; Jia B
    ACS Nano; 2021 May; 15(5):8930-8939. PubMed ID: 33988983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.