These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 30119415)

  • 1. Investigation about the influence of longitudinal-mode structure of the laser on the relative intensity noise properties.
    Guo Y; Lu H; Xu M; Su J; Peng K
    Opt Express; 2018 Aug; 26(16):21108-21118. PubMed ID: 30119415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of the pump scheme on the output power and the intensity noise of a single-frequency continuous-wave laser.
    Guo Y; Peng W; Su J; Lu H; Peng K
    Opt Express; 2020 Feb; 28(4):5866-5874. PubMed ID: 32121801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Realization of a 101  W single-frequency continuous wave all-solid-state 1064  nm laser by means of mode self-reproduction.
    Guo Y; Xu M; Peng W; Su J; Lu H; Peng K
    Opt Lett; 2018 Dec; 43(24):6017-6020. PubMed ID: 30547997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intensity noise suppression of a high-power single-frequency CW laser by controlling the stimulated emission rate.
    Guo Y; Lu H; Peng W; Su J; Peng K
    Opt Lett; 2019 Dec; 44(24):6033-6036. PubMed ID: 32628212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intensity noise manipulation of a single-frequency laser with high output power by intracavity nonlinear loss.
    Lu H; Guo Y; Peng K
    Opt Lett; 2015 Nov; 40(22):5196-9. PubMed ID: 26565833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-power stable continuous-wave single-longitudinal-mode Nd:YVO
    Ma Y; Li Y; Feng J; Zhang K
    Opt Express; 2018 Jan; 26(2):1538-1546. PubMed ID: 29402027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of the nonlinear crystal length for high-power single-frequency intracavity frequency-doubling lasers.
    Guo Y; Su J; Lu H
    Appl Opt; 2022 Sep; 61(26):7565-7570. PubMed ID: 36256354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduction of relative intensity noise in a diamond Raman laser.
    Liu Y; Yang X; Zhu C; Sun Y; Li M; Cheng X; Mildren RP; Chen D; Chen W; Feng Y
    Opt Express; 2024 May; 32(11):18562-18571. PubMed ID: 38859009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Auto-pump-depleted stable single-longitudinal-mode 1.5 μm source with the assistance of SHG.
    Peng X; Duan L; Wei J; Su J; Lu H; Peng K
    Opt Lett; 2023 Nov; 48(21):5719-5722. PubMed ID: 37910742
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scheme for improving laser stability via feedback control of intracavity nonlinear loss.
    Jin P; Lu H; Su J; Peng K
    Appl Opt; 2016 May; 55(13):3478-82. PubMed ID: 27140359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous-wave single-frequency 532 nm laser source emitting 130 W into the fundamental transversal mode.
    Meier T; Willke B; Danzmann K
    Opt Lett; 2010 Nov; 35(22):3742-4. PubMed ID: 21081982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental investigation about influences of longitudinal-mode structure of pumping source on a Ti:sapphire laser.
    Lu H; Su J; Xie C; Peng K
    Opt Express; 2011 Jan; 19(2):1344-53. PubMed ID: 21263675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wide-waveguide high-power low-RIN single-mode distributed feedback laser diodes for optical communication.
    Xiang M; Zhang Y; Li G; Liu C; Chen Q; Lu Q; Huang L; Lu M; DoneGan J; Guo W
    Opt Express; 2022 Aug; 30(17):30187-30197. PubMed ID: 36242127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relative intensity noise in a multi-Stokes Brillouin laser.
    Sebastian A; Balakireva IV; Fresnel S; Trebaol S; Besnard P
    Opt Express; 2018 Dec; 26(26):33700-33711. PubMed ID: 30650803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 1.5μm, mode-hop-free full C-band wavelength tunable laser diode with a linewidth of 8 kHz and a RIN of -130 dB/Hz and its extension to the L-band.
    Kasai K; Nakazawa M; Tomomatsu Y; Endo T
    Opt Express; 2017 Sep; 25(18):22113-22124. PubMed ID: 29041500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stable, 12 W, continuous-wave single-frequency Nd:YVO4 green laser polarized and dual-end pumped at 880 nm.
    Liu J; Wang Z; Li H; Liu Q; Zhang K
    Opt Express; 2011 Mar; 19(7):6777-82. PubMed ID: 21451704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-mode-matching compact low-noise all-solid-state continuous wave single-frequency laser with output power of 140 W.
    Wei Y; Peng W; Li J; Jin P; Su J; Lu H; Peng K
    Opt Lett; 2023 Feb; 48(3):676-679. PubMed ID: 36723561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-power single-frequency continuous-wave 355 nm UV laser via a frequency-correlated dual-wavelength laser.
    Wei J; Wang Y; Yin R; Su J; Lu H
    Opt Lett; 2024 Jul; 49(14):4014-4017. PubMed ID: 39008765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stable continuous-wave single-frequency Nd:YAG blue laser at 473 nm considering the influence of the energy-transfer upconversion.
    Wang Y; Liu J; Liu Q; Li Y; Zhang K
    Opt Express; 2010 Jun; 18(12):12044-51. PubMed ID: 20588326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear coupling of relative intensity noise from pump to a fiber ring laser mode-locked with carbon nanotubes.
    Wu K; Wong JH; Shum P; Fu S; Ouyang C; Wang H; Kelleher EJ; Chernov AI; Obraztsova ED; Chen J
    Opt Express; 2010 Aug; 18(16):16663-70. PubMed ID: 20721057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.