These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 30119433)

  • 1. Accelerated generation of holographic videos of 3-D objects in rotational motion using a curved hologram-based rotational-motion compensation method.
    Cao HK; Lin SF; Kim ES
    Opt Express; 2018 Aug; 26(16):21279-21300. PubMed ID: 30119433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Faster generation of holographic videos of objects moving in space using a spherical hologram-based 3-D rotational motion compensation scheme.
    Cao HK; Kim ES
    Opt Express; 2019 Sep; 27(20):29139-29157. PubMed ID: 31684653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast generation of video holograms of three-dimensional moving objects using a motion compensation-based novel look-up table.
    Kim SC; Dong XB; Kwon MW; Kim ES
    Opt Express; 2013 May; 21(9):11568-84. PubMed ID: 23670014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-directional motion-compensation mask-based novel look-up table on graphics processing units for video-rate generation of digital holographic videos of three-dimensional scenes.
    Kwon MW; Kim SC; Kim ES
    Appl Opt; 2016 Jan; 55(3):A22-31. PubMed ID: 26835954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-directional motion compensation-based novel-look-up-table for video hologram generation of three-dimensional objects freely maneuvering in space.
    Dong XB; Kim SC; Kim ES
    Opt Express; 2014 Jul; 22(14):16925-44. PubMed ID: 25090509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MPEG-based novel look-up table for rapid generation of video holograms of fast-moving three-dimensional objects.
    Dong XB; Kim SC; Kim ES
    Opt Express; 2014 Apr; 22(7):8047-67. PubMed ID: 24718180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast one-step calculation of holographic videos of three-dimensional scenes by combined use of baseline and depth-compensating principal fringe patterns.
    Kim SC; Kim ES
    Opt Express; 2014 Sep; 22(19):22513-27. PubMed ID: 25321721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Object tracking mask-based NLUT on GPUs for real-time generation of holographic videos of three-dimensional scenes.
    Kwon MW; Kim SC; Yoon SE; Ho YS; Kim ES
    Opt Express; 2015 Feb; 23(3):2101-20. PubMed ID: 25836082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient holographic video generation based on rotational transformation of wavefields.
    Symeonidou A; Kizhakkumkara RM; Birnbaum T; Schelkens P
    Opt Express; 2019 Dec; 27(26):37383-37399. PubMed ID: 31878520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acceleration of computer-generated hologram using wavefront-recording plane and look-up table in three-dimensional holographic display.
    Pi D; Liu J; Han Y; Yu S; Xiang N
    Opt Express; 2020 Mar; 28(7):9833-9841. PubMed ID: 32225583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Object-based digital hologram segmentation and motion compensation.
    Birnbaum T; Blinder D; Muhamad RK; Schretter C; Symeonidou A; Schelkens P
    Opt Express; 2020 Apr; 28(8):11861-11882. PubMed ID: 32403688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global motion compensation for compressing holographic videos.
    Blinder D; Schretter C; Schelkens P
    Opt Express; 2018 Oct; 26(20):25524-25533. PubMed ID: 30469653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-step acceleration calculation method to generate curved holograms using the intermediate plane in a three-dimensional holographic display.
    Pi D; Liu J; Yu S
    Appl Opt; 2021 Sep; 60(25):7640-7647. PubMed ID: 34613232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Full-scale one-dimensional NLUT method for accelerated generation of holographic videos with the least memory capacity.
    Cao HK; Kim ES
    Opt Express; 2019 Apr; 27(9):12673-12691. PubMed ID: 31052806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast Hologram Calculation Method Based on Wavefront Precise Diffraction.
    Wang Z; Li Y; Tang Z; Li Z; Wang D
    Micromachines (Basel); 2023 Aug; 14(9):. PubMed ID: 37763853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accelerated one-step generation of full-color holographic videos using a color-tunable novel-look-up-table method for holographic three-dimensional television broadcasting.
    Kim SC; Dong XB; Kim ES
    Sci Rep; 2015 Sep; 5():14056. PubMed ID: 26358334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simple calculation of a computer-generated hologram for lensless holographic 3D projection using a nonuniform sampled wavefront recording plane.
    Chang C; Wu J; Qi Y; Yuan C; Nie S; Xia J
    Appl Opt; 2016 Oct; 55(28):7988-7996. PubMed ID: 27828036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Faster generation of holographic video of 3-D scenes with a Fourier spectrum-based NLUT method.
    Cao H; Jin X; Ai L; Kim ES
    Opt Express; 2021 Nov; 29(24):39738-39754. PubMed ID: 34809331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of wavefront recording plane-based hologram calculations: ray-tracing method versus look-up table method.
    Yanagihara H; Shimobaba T; Kakue T; Ito T
    Appl Opt; 2020 Mar; 59(8):2400-2408. PubMed ID: 32225774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Color curved hologram calculation method based on angle multiplexing.
    Wang D; Li NN; Li ZS; Chen C; Lee B; Wang QH
    Opt Express; 2022 Jan; 30(2):3157-3171. PubMed ID: 35209441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.