These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 30119478)

  • 1. Influences of high-order dispersion on temporal and spectral properties of microcavity solitons.
    Liu M; Wang L; Sun Q; Li S; Ge Z; Lu Z; Zeng C; Wang G; Zhang W; Hu X; Zhao W
    Opt Express; 2018 Jun; 26(13):16477-16487. PubMed ID: 30119478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Broadband Kerr frequency combs and intracavity soliton dynamics influenced by high-order cavity dispersion.
    Wang S; Guo H; Bai X; Zeng X
    Opt Lett; 2014 May; 39(10):2880-3. PubMed ID: 24978227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From the Lugiato-Lefever equation to microresonator-based soliton Kerr frequency combs.
    Lugiato LA; Prati F; Gorodetsky ML; Kippenberg TJ
    Philos Trans A Math Phys Eng Sci; 2018 Nov; 376(2135):. PubMed ID: 30420551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Third-order chromatic dispersion stabilizes Kerr frequency combs.
    Parra-Rivas P; Gomila D; Leo F; Coen S; Gelens L
    Opt Lett; 2014 May; 39(10):2971-4. PubMed ID: 24978250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chirped-pulsed Kerr solitons in the Lugiato-Lefever equation with spectral filtering.
    Dong X; Spiess C; Bucklew VG; Renninger WH
    Phys Rev Res; 2021 Nov; 3(3):. PubMed ID: 35434640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatiotemporal evolution of a cosine-modulated stationary field and Kerr frequency comb generation in a microresonator.
    Hu X; Liu Y; Xu X; Feng Y; Zhang W; Wang W; Song J; Wang Y; Zhao W
    Appl Opt; 2015 Oct; 54(29):8751-7. PubMed ID: 26479815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of dark breathers and Raman-Kerr frequency combs influenced by high-order dispersion.
    Liu M; Huang H; Lu Z; Wang Y; Cai Y; Zhao W
    Opt Express; 2021 Jun; 29(12):18095-18107. PubMed ID: 34154076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermo-Optical Control of Raman Solitons in a Functionalized Silica Microsphere.
    Anashkina EA; Marisova MP; Andrianov AV
    Micromachines (Basel); 2022 Sep; 13(10):. PubMed ID: 36295969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Zero dispersion Kerr solitons in optical microresonators.
    Anderson MH; Weng W; Lihachev G; Tikan A; Liu J; Kippenberg TJ
    Nat Commun; 2022 Aug; 13(1):4764. PubMed ID: 35963859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Raman Self-Frequency Shift of Dissipative Kerr Solitons in an Optical Microresonator.
    Karpov M; Guo H; Kordts A; Brasch V; Pfeiffer MH; Zervas M; Geiselmann M; Kippenberg TJ
    Phys Rev Lett; 2016 Mar; 116(10):103902. PubMed ID: 27015482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model.
    Coen S; Randle HG; Sylvestre T; Erkintalo M
    Opt Lett; 2013 Jan; 38(1):37-9. PubMed ID: 23282830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Breathing dynamics of symmetry-broken temporal cavity solitons in Kerr ring resonators.
    Xu G; Hill L; Fatome J; Oppo GL; Erkintalo M; Murdoch SG; Coen S
    Opt Lett; 2022 Mar; 47(6):1486-1489. PubMed ID: 35290345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dispersion-less Kerr solitons in spectrally confined optical cavities.
    Xue X; Grelu P; Yang B; Wang M; Li S; Zheng X; Zhou B
    Light Sci Appl; 2023 Jan; 12(1):19. PubMed ID: 36617564
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Near-zero-dispersion soliton and broadband modulational instability Kerr microcombs in anomalous dispersion.
    Xiao Z; Li T; Cai M; Zhang H; Huang Y; Li C; Yao B; Wu K; Chen J
    Light Sci Appl; 2023 Feb; 12(1):33. PubMed ID: 36725833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Breathing dissipative solitons in optical microresonators.
    Lucas E; Karpov M; Guo H; Gorodetsky ML; Kippenberg TJ
    Nat Commun; 2017 Sep; 8(1):736. PubMed ID: 28963496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stably accessing octave-spanning microresonator frequency combs in the soliton regime.
    Li Q; Briles TC; Westly DA; Drake TE; Stone JR; Ilic BR; Diddams SA; Papp SB; Srinivasan K
    Optica; 2017 Feb; 4(2):193-203. PubMed ID: 28603754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Soliton repetition rate in a silicon-nitride microresonator.
    Bao C; Xuan Y; Wang C; Jaramillo-Villegas JA; Leaird DE; Qi M; Weiner AM
    Opt Lett; 2017 Feb; 42(4):759-762. PubMed ID: 28198856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photonic chip-based optical frequency comb using soliton Cherenkov radiation.
    Brasch V; Geiselmann M; Herr T; Lihachev G; Pfeiffer MH; Gorodetsky ML; Kippenberg TJ
    Science; 2016 Jan; 351(6271):357-60. PubMed ID: 26721682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polychromatic Cherenkov Radiation Induced Group Velocity Symmetry Breaking in Counterpropagating Dissipative Kerr Solitons.
    Weng W; Bouchand R; Lucas E; Kippenberg TJ
    Phys Rev Lett; 2019 Dec; 123(25):253902. PubMed ID: 31922800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deterministic single soliton generation and compression in microring resonators avoiding the chaotic region.
    Jaramillo-Villegas JA; Xue X; Wang PH; Leaird DE; Weiner AM
    Opt Express; 2015 Apr; 23(8):9618-26. PubMed ID: 25968998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.