These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 30119496)

  • 21. Generalized inverse lithography methods for phase-shifting mask design.
    Ma X; Arce GR
    Opt Express; 2007 Nov; 15(23):15066-79. PubMed ID: 19550790
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pixelated source and mask optimization for immersion lithography.
    Ma X; Han C; Li Y; Dong L; Arce GR
    J Opt Soc Am A Opt Image Sci Vis; 2013 Jan; 30(1):112-23. PubMed ID: 23456007
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimal 3D phase-shifting masks in partially coherent illumination.
    Ma X; Arce GR; Li Y
    Appl Opt; 2011 Oct; 50(28):5567-76. PubMed ID: 22016227
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Compensation of EUV lithography mask blank defect based on an advanced genetic algorithm.
    Wu R; Dong L; Ma X; Wei Y
    Opt Express; 2021 Aug; 29(18):28872-28885. PubMed ID: 34615008
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Decomposition-learning-based thick-mask model for partially coherent lithography system.
    Li Z; Dong L; Ma X; Wei Y
    Opt Express; 2023 Jun; 31(12):20321-20337. PubMed ID: 37381429
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genetic algorithm-based optical proximity correction for DMD maskless lithography.
    Yang Z; Lin J; Liu L; Zhu Z; Zhang R; Wen S; Yin Y; Lan C; Li C; Liu Y
    Opt Express; 2023 Jul; 31(14):23598-23607. PubMed ID: 37475440
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efficient optical proximity correction based on virtual edge and mask pixelation with two-phase sampling.
    Chen G; Li S; Wang X
    Opt Express; 2021 May; 29(11):17440-17463. PubMed ID: 34154287
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intensity modulation based optical proximity optimization for the maskless lithography.
    Liu J; Liu J; Deng Q; Feng J; Zhou S; Hu S
    Opt Express; 2020 Jan; 28(1):548-557. PubMed ID: 32118980
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Plasmonic lithography fast imaging model based on the decomposition machine learning method.
    Ding H; Liu L; Li Z; Dong L; Wei Y; Ye T
    Opt Express; 2023 Jan; 31(1):192-210. PubMed ID: 36606960
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optical proximity correction (OPC) in near-field lithography with pixel-based field sectioning time modulation.
    Oh S; Han D; Shim HB; Hahn JW
    Nanotechnology; 2018 Jan; 29(4):045301. PubMed ID: 29206111
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Theoretical modeling of ice lithography on amorphous solid water.
    Liu T; Tong X; Tian S; Xie Y; Zhu M; Feng B; Pan X; Zheng R; Wu S; Zhao D; Chen Y; Lu B; Qiu M
    Nanoscale; 2022 Jun; 14(25):9045-9052. PubMed ID: 35703448
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fast inverse lithography approach based on a model-driven graph convolutional network.
    Zhang S; Ma X; Zhang J
    Opt Express; 2023 Oct; 31(22):36451-36467. PubMed ID: 38017798
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Robust source and mask optimization compensating for mask topography effects in computational lithography.
    Li J; Lam EY
    Opt Express; 2014 Apr; 22(8):9471-85. PubMed ID: 24787836
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fast aerial image model for EUV lithography using the adjoint fully convolutional network.
    Lin J; Dong L; Fan T; Ma X; Wei Y
    Opt Express; 2022 Mar; 30(7):11944-11958. PubMed ID: 35473126
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fast extreme ultraviolet lithography mask near-field calculation method based on machine learning.
    Lin J; Dong L; Fan T; Ma X; Chen R; Wei Y
    Appl Opt; 2020 Mar; 59(9):2829-2838. PubMed ID: 32225832
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An Improved 3D OPC Method for the Fabrication of High-Fidelity Micro Fresnel Lenses.
    Peng F; Sun C; Wan H; Gui C
    Micromachines (Basel); 2023 Dec; 14(12):. PubMed ID: 38138389
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Computational rule-based approach for corner correction of non-Manhattan geometries in mask aligner photolithography.
    Vetter A; Yan C; Kirner R; Scharf T; Noell W; Voelkel R; Rockstuhl C
    Opt Express; 2019 Oct; 27(22):32523-32535. PubMed ID: 31684463
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multiple-field-point pupil wavefront optimization in computational lithography.
    Li T; Liu Y; Sun Y; Li E; Wei P; Li Y
    Appl Opt; 2019 Oct; 58(30):8331-8338. PubMed ID: 31674509
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Designing diffractive optical elements for shaping partially coherent beams by proximity correction.
    Dai S; Zheng X; Zhao S
    Opt Express; 2023 Apr; 31(9):14464-14472. PubMed ID: 37157310
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lithography-defect-driven source-mask optimization solution for full-chip optical proximity correction.
    Peng A; Hsu SD; Howell RC; Li Q
    Appl Opt; 2021 Jan; 60(3):616-620. PubMed ID: 33690442
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.