These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 30119545)
1. Optical properties of plasmonic core-shell nanomatryoshkas: a quantum hydrodynamic analysis. Khalid M; Sala FD; Ciracì C Opt Express; 2018 Jun; 26(13):17322-17334. PubMed ID: 30119545 [TBL] [Abstract][Full Text] [Related]
2. Nanooptics of Plasmonic Nanomatryoshkas: Shrinking the Size of a Core-Shell Junction to Subnanometer. Lin L; Zapata M; Xiong M; Liu Z; Wang S; Xu H; Borisov AG; Gu H; Nordlander P; Aizpurua J; Ye J Nano Lett; 2015 Oct; 15(10):6419-28. PubMed ID: 26375710 [TBL] [Abstract][Full Text] [Related]
3. Electron Transport Across Plasmonic Molecular Nanogaps Interrogated with Surface-Enhanced Raman Scattering. Lin L; Zhang Q; Li X; Qiu M; Jiang X; Jin W; Gu H; Lei DY; Ye J ACS Nano; 2018 Jul; 12(7):6492-6503. PubMed ID: 29924592 [TBL] [Abstract][Full Text] [Related]
4. Quantum effects in the plasmon response of bimetallic core-shell nanostructures. Marinica DC; Aizpurua J; Borisov AG Opt Express; 2016 Oct; 24(21):23941-23956. PubMed ID: 27828228 [TBL] [Abstract][Full Text] [Related]
5. Quantum effects in the optical response of extended plasmonic gaps: validation of the quantum corrected model in core-shell nanomatryushkas. Zapata M; Camacho Beltrán ÁS; Borisov AG; Aizpurua J Opt Express; 2015 Mar; 23(6):8134-49. PubMed ID: 25837151 [TBL] [Abstract][Full Text] [Related]
7. Orbital-free methods for plasmonics: Linear response. Della Sala F J Chem Phys; 2022 Sep; 157(10):104101. PubMed ID: 36109244 [TBL] [Abstract][Full Text] [Related]
8. Numerical scheme for a nonlinear optical response of a metallic nanostructure: quantum hydrodynamic theory solved by adopting an effective Schrödinger equation. Takeuci T; Yabana K Opt Express; 2022 Mar; 30(7):11572-11587. PubMed ID: 35473099 [TBL] [Abstract][Full Text] [Related]
10. Size-Dependent Plasmonic Resonances from Large-Scale Quantum Simulations. Xiang H; Zhang X; Neuhauser D; Lu G J Phys Chem Lett; 2014 Apr; 5(7):1163-9. PubMed ID: 26274465 [TBL] [Abstract][Full Text] [Related]
11. Assessment of charge-transfer excitations with time-dependent, range-separated density functional theory based on long-range MP2 and multiconfigurational self-consistent field wave functions. Hedegård ED; Heiden F; Knecht S; Fromager E; Jensen HJ J Chem Phys; 2013 Nov; 139(18):184308. PubMed ID: 24320275 [TBL] [Abstract][Full Text] [Related]
12. Excitations, optical absorption spectra, and optical excitonic gaps of heterofullerenes. I. C60, C59N+, and C48N12: theory and experiment. Xie RH; Bryant GW; Sun G; Nicklaus MC; Heringer D; Frauenheim T; Manaa MR; Smith VH; Araki Y; Ito O J Chem Phys; 2004 Mar; 120(11):5133-47. PubMed ID: 15267383 [TBL] [Abstract][Full Text] [Related]
13. Numerical method for analyzing the near-field enhancement of nonspherical dielectric-core metallic-shell particles accounting for the nonlocal dispersion. Eremin Y; Doicu A; Wriedt T J Opt Soc Am A Opt Image Sci Vis; 2020 Jul; 37(7):1135-1142. PubMed ID: 32609674 [TBL] [Abstract][Full Text] [Related]
14. Bridging quantum and classical plasmonics with a quantum-corrected model. Esteban R; Borisov AG; Nordlander P; Aizpurua J Nat Commun; 2012 May; 3():825. PubMed ID: 22569369 [TBL] [Abstract][Full Text] [Related]
15. Plasmon Couplings from Subsystem Time-Dependent Density Functional Theory. Giannone G; Śmiga S; D'Agostino S; Fabiano E; Della Sala F J Phys Chem A; 2021 Aug; 125(33):7246-7259. PubMed ID: 34403247 [TBL] [Abstract][Full Text] [Related]
16. Many-Body Perturbation Theory (MBPT) and Time-Dependent Density-Functional Theory (TD-DFT): MBPT Insights About What Is Missing In, and Corrections To, the TD-DFT Adiabatic Approximation. Casida ME; Huix-Rotllant M Top Curr Chem; 2016; 368():1-60. PubMed ID: 26003561 [TBL] [Abstract][Full Text] [Related]
17. Spin-adapted open-shell time-dependent density functional theory. III. An even better and simpler formulation. Li Z; Liu W J Chem Phys; 2011 Nov; 135(19):194106. PubMed ID: 22112065 [TBL] [Abstract][Full Text] [Related]
18. Molecular fluorescence enhancement in plasmonic environments: exploring the role of nonlocal effects. Tserkezis C; Stefanou N; Wubs M; Mortensen NA Nanoscale; 2016 Oct; 8(40):17532-17541. PubMed ID: 27722520 [TBL] [Abstract][Full Text] [Related]
19. Projected Dipole Model for Quantum Plasmonics. Yan W; Wubs M; Asger Mortensen N Phys Rev Lett; 2015 Sep; 115(13):137403. PubMed ID: 26451583 [TBL] [Abstract][Full Text] [Related]
20. Modeling and measuring plasmonic excitations in hollow spherical gold nanoparticles. Müller MM; Perdana N; Rockstuhl C; Holzer C J Chem Phys; 2022 Mar; 156(9):094103. PubMed ID: 35259902 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]