BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 30120205)

  • 1. Rhythm and Synchrony in a Cortical Network Model.
    Chariker L; Shapley R; Young LS
    J Neurosci; 2018 Oct; 38(40):8621-8634. PubMed ID: 30120205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LFP spectral peaks in V1 cortex: network resonance and cortico-cortical feedback.
    Kang K; Shelley M; Henrie JA; Shapley R
    J Comput Neurosci; 2010 Dec; 29(3):495-507. PubMed ID: 19862612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cortical dynamics during naturalistic sensory stimulations: experiments and models.
    Mazzoni A; Brunel N; Cavallari S; Logothetis NK; Panzeri S
    J Physiol Paris; 2011; 105(1-3):2-15. PubMed ID: 21907800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Layer-specific excitation/inhibition balances during neuronal synchronization in the visual cortex.
    Adesnik H
    J Physiol; 2018 May; 596(9):1639-1657. PubMed ID: 29313982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Orientation Selectivity from Very Sparse LGN Inputs in a Comprehensive Model of Macaque V1 Cortex.
    Chariker L; Shapley R; Young LS
    J Neurosci; 2016 Dec; 36(49):12368-12384. PubMed ID: 27927956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Statistical comparison of spike responses to natural stimuli in monkey area V1 with simulated responses of a detailed laminar network model for a patch of V1.
    Rasch MJ; Schuch K; Logothetis NK; Maass W
    J Neurophysiol; 2011 Feb; 105(2):757-78. PubMed ID: 21106898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibitory synchrony as a mechanism for attentional gain modulation.
    Tiesinga PH; Fellous JM; Salinas E; José JV; Sejnowski TJ
    J Physiol Paris; 2004; 98(4-6):296-314. PubMed ID: 16274973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Distinct Class of Bursting Neurons with Strong Gamma Synchronization and Stimulus Selectivity in Monkey V1.
    Onorato I; Neuenschwander S; Hoy J; Lima B; Rocha KS; Broggini AC; Uran C; Spyropoulos G; Klon-Lipok J; Womelsdorf T; Fries P; Niell C; Singer W; Vinck M
    Neuron; 2020 Jan; 105(1):180-197.e5. PubMed ID: 31732258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A stochastic model of input effectiveness during irregular gamma rhythms.
    Dumont G; Northoff G; Longtin A
    J Comput Neurosci; 2016 Feb; 40(1):85-101. PubMed ID: 26610791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decorrelated Input Dissociates Narrow Band γ Power and BOLD in Human Visual Cortex.
    Butler R; Bernier PM; Lefebvre J; Gilbert G; Whittingstall K
    J Neurosci; 2017 May; 37(22):5408-5418. PubMed ID: 28455370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs.
    Softky WR; Koch C
    J Neurosci; 1993 Jan; 13(1):334-50. PubMed ID: 8423479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chaos and synchrony in a model of a hypercolumn in visual cortex.
    Hansel D; Sompolinsky H
    J Comput Neurosci; 1996 Mar; 3(1):7-34. PubMed ID: 8717487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A quantitative theory of gamma synchronization in macaque V1.
    Lowet E; Roberts MJ; Peter A; Gips B; De Weerd P
    Elife; 2017 Aug; 6():. PubMed ID: 28857743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Emergent dynamics in a model of visual cortex.
    Rangan AV; Young LS
    J Comput Neurosci; 2013 Oct; 35(2):155-67. PubMed ID: 23519442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cortical VIP neurons locally control the gain but globally control the coherence of gamma band rhythms.
    Veit J; Handy G; Mossing DP; Doiron B; Adesnik H
    Neuron; 2023 Feb; 111(3):405-417.e5. PubMed ID: 36384143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gamma-phase shifting in awake monkey visual cortex.
    Vinck M; Lima B; Womelsdorf T; Oostenveld R; Singer W; Neuenschwander S; Fries P
    J Neurosci; 2010 Jan; 30(4):1250-7. PubMed ID: 20107053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding the relationships between spike rate and delta/gamma frequency bands of LFPs and EEGs using a local cortical network model.
    Mazzoni A; Whittingstall K; Brunel N; Logothetis NK; Panzeri S
    Neuroimage; 2010 Sep; 52(3):956-72. PubMed ID: 20026218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microsaccade-rhythmic modulation of neural synchronization and coding within and across cortical areas V1 and V2.
    Lowet E; Gips B; Roberts MJ; De Weerd P; Jensen O; van der Eerden J
    PLoS Biol; 2018 May; 16(5):e2004132. PubMed ID: 29851960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laminar analysis of visually evoked activity in the primary visual cortex.
    Xing D; Yeh CI; Burns S; Shapley RM
    Proc Natl Acad Sci U S A; 2012 Aug; 109(34):13871-6. PubMed ID: 22872866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Top-Down Beta Enhances Bottom-Up Gamma.
    Richter CG; Thompson WH; Bosman CA; Fries P
    J Neurosci; 2017 Jul; 37(28):6698-6711. PubMed ID: 28592697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.