These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 30120328)

  • 1. Immuno-impedimetric Biosensor for Onsite Monitoring of Ascospores and Forecasting of Sclerotinia Stem Rot of Canola.
    Shoute LCT; Anwar A; MacKay S; Abdelrasoul GN; Lin D; Yan Z; Nguyen AH; McDermott MT; Shah MA; Yang J; Chen J; Li XS
    Sci Rep; 2018 Aug; 8(1):12396. PubMed ID: 30120328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single ascospore detection for the forecasting of
    Duarte PA; Menze L; Abdelrasoul GN; Yosinski S; Kobos Z; Stuermer R; Reed M; Yang J; Li XS; Chen J
    Lab Chip; 2020 Sep; 20(19):3644-3652. PubMed ID: 32901637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple Species of Asteraceae Plants Are Susceptible to Root Infection by the Necrotrophic Fungal Pathogen
    Underwood W; Gilley M; Misar CG; Gulya TJ; Seiler GJ; Markell SG
    Plant Dis; 2022 May; 106(5):1366-1373. PubMed ID: 34874175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of polyclonal-antibody-based immunoassays for detection of Sclerotinia sclerotiorum on canola petals, and prediction of stem rot.
    Bom M; Boland GJ
    Can J Microbiol; 2000 Aug; 46(8):723-9. PubMed ID: 10941518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The C2H2 Transcription Factor SsZFH1 Regulates the Size, Number, and Development of Apothecia in
    Liu L; Lyu X; Pan Z; Wang Q; Mu W; Benny U; Rollins JA; Pan H
    Phytopathology; 2022 Jul; 112(7):1476-1485. PubMed ID: 35021860
    [No Abstract]   [Full Text] [Related]  

  • 6. Effect of timing of application Pseudomonas fluorescens in suppression Sclerotinia sclerotiorum, the causal agent of white mold in canola.
    Ahmadzadeh M; Behnam S; Sharifi Tehrani A; Hedjaroude GA
    Commun Agric Appl Biol Sci; 2007; 72(4):957-60. PubMed ID: 18396834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of anti-sclerotinia scFv in transgenic Brassica napus enhances tolerance against stem rot.
    Yajima W; Verma SS; Shah S; Rahman MH; Liang Y; Kav NN
    N Biotechnol; 2010 Dec; 27(6):816-21. PubMed ID: 20933110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and identification of Sclerotinia stem rot causal pathogen in Arabidopsis thaliana.
    Wang AR; Lin WW; Chen XT; Lu GD; Zhou J; Wang ZH
    J Zhejiang Univ Sci B; 2008 Oct; 9(10):818-22. PubMed ID: 18837110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Incubation of excised apothecia enhances ascus maturation of Sclerotinia sclerotiorum.
    Wu BM; Peng YL; Qin QM; Subbarao KV
    Mycologia; 2007; 99(1):33-41. PubMed ID: 17663121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ascospore Inoculum Density and Characterization of Components of Partial Resistance to Sclerotinia sclerotiorum in Soybean.
    Huzar-Novakowiski J; Dorrance AE
    Plant Dis; 2018 Jul; 102(7):1326-1333. PubMed ID: 30673564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validating Sclerotinia sclerotiorum Apothecial Models to Predict Sclerotinia Stem Rot in Soybean (Glycine max) Fields.
    Willbur JF; Fall ML; Byrne AM; Chapman SA; McCaghey MM; Mueller BD; Schmidt R; Chilvers MI; Mueller DS; Kabbage M; Giesler LJ; Conley SP; Smith DL
    Plant Dis; 2018 Dec; 102(12):2592-2601. PubMed ID: 30334675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Narrow windrow burning canola (Brassica napus L.) residue for Sclerotinia sclerotiorum (Lib.) de Bary sclerotia destruction.
    Brooks KD; Bennett SJ; Hodgson LM; Ashworth MB
    Pest Manag Sci; 2018 Nov; 74(11):2594-2600. PubMed ID: 29687565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ascospore release and survival in Sclerotinia sclerotiorum.
    Clarkson JP; Staveley J; Phelps K; Young CS; Whipps JM
    Mycol Res; 2003 Feb; 107(Pt 2):213-22. PubMed ID: 12747333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of timing of application and population dynamics on the degree of biological control of Sclerotinia sclerotiorum by bacterial antagonists.
    Savchuk S; Dilantha Fernando WG
    FEMS Microbiol Ecol; 2004 Sep; 49(3):379-88. PubMed ID: 19712288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly Efficient Capture and Quantification of the Airborne Fungal Pathogen
    Duarte PA; Menze L; Shoute L; Zeng J; Savchenko O; Lyu J; Chen J
    ACS Omega; 2022 Jan; 7(1):459-468. PubMed ID: 35036715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First Report of
    Marin MV; Peres NA
    Plant Dis; 2020 Aug; ():. PubMed ID: 32748719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatiotemporal Distribution Pattern of Sclerotinia sclerotiorum Apothecia is Modulated by Canopy Closure and Soil Temperature in an Irrigated Soybean Field.
    Fall ML; Willbur JF; Smith DL; Byrne AM; Chilvers MI
    Plant Dis; 2018 Sep; 102(9):1794-1802. PubMed ID: 30125202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Weather-Based Models for Assessing the Risk of Sclerotinia sclerotiorum Apothecial Presence in Soybean (Glycine max) Fields.
    Willbur JF; Fall ML; Bloomingdale C; Byrne AM; Chapman SA; Isard SA; Magarey RD; McCaghey MM; Mueller BD; Russo JM; Schlegel J; Chilvers MI; Mueller DS; Kabbage M; Smith DL
    Plant Dis; 2018 Jan; 102(1):73-84. PubMed ID: 30673449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Wetness Duration and Incubation Temperature on Development of Ascosporic Infections by
    Shahoveisi F; Del Río Mendoza LE
    Plant Dis; 2020 Jun; 104(6):1817-1823. PubMed ID: 32208061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and Quantification of Ascospores as the Primary Inoculum for Collar Rot of Greenhouse-Produced Tobacco Seedlings.
    Gutierrez WA; Shew HD
    Plant Dis; 1998 May; 82(5):485-490. PubMed ID: 30856976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.