These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

331 related articles for article (PubMed ID: 30120380)

  • 1. Metabolism and mitochondria in polycystic kidney disease research and therapy.
    Padovano V; Podrini C; Boletta A; Caplan MJ
    Nat Rev Nephrol; 2018 Nov; 14(11):678-687. PubMed ID: 30120380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multidrug therapy for polycystic kidney disease: a review and perspective.
    Aguiari G; Catizone L; Del Senno L
    Am J Nephrol; 2013; 37(2):175-82. PubMed ID: 23428809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Double inhibition of cAMP and mTOR signalling may potentiate the reduction of cell growth in ADPKD cells.
    de Stephanis L; Bonon A; Varani K; Lanza G; Gafà R; Pinton P; Pema M; Somlo S; Boletta A; Aguiari G
    Clin Exp Nephrol; 2017 Apr; 21(2):203-211. PubMed ID: 27278932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reprogramming of Energy Metabolism in Human
    Song X; Pickel L; Sung HK; Scholey J; Pei Y
    Int J Mol Sci; 2024 Jun; 25(13):. PubMed ID: 39000280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular and cellular pathogenesis of autosomal dominant polycystic kidney disease.
    Bastos AP; Onuchic LF
    Braz J Med Biol Res; 2011 Jul; 44(7):606-17. PubMed ID: 21625823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapamycin treatment dose-dependently improves the cystic kidney in a new ADPKD mouse model via the mTORC1 and cell-cycle-associated CDK1/cyclin axis.
    Li A; Fan S; Xu Y; Meng J; Shen X; Mao J; Zhang L; Zhang X; Moeckel G; Wu D; Wu G; Liang C
    J Cell Mol Med; 2017 Aug; 21(8):1619-1635. PubMed ID: 28244683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting AMP-activated protein kinase (AMPK) for treatment of autosomal dominant polycystic kidney disease.
    Song X; Tsakiridis E; Steinberg GR; Pei Y
    Cell Signal; 2020 Sep; 73():109704. PubMed ID: 32621956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular pathogenesis of autosomal dominant polycystic kidney disease.
    Yoder BK; Mulroy S; Eustace H; Boucher C; Sandford R
    Expert Rev Mol Med; 2006 Jan; 8(2):1-22. PubMed ID: 16515728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adenylyl cyclase 5 links changes in calcium homeostasis to cAMP-dependent cyst growth in polycystic liver disease.
    Spirli C; Mariotti V; Villani A; Fabris L; Fiorotto R; Strazzabosco M
    J Hepatol; 2017 Mar; 66(3):571-580. PubMed ID: 27826057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic Mechanisms of ADPKD.
    Kim DY; Park JH
    Adv Exp Med Biol; 2016; 933():13-22. PubMed ID: 27730431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of the Calcium-Sensing Receptor Corrects the Impaired Mitochondrial Energy Status Observed in Renal Polycystin-1 Knockdown Cells Modeling Autosomal Dominant Polycystic Kidney Disease.
    Di Mise A; Ranieri M; Centrone M; Venneri M; Tamma G; Valenti D; Valenti G
    Front Mol Biosci; 2018; 5():77. PubMed ID: 30197885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Autosomal Dominant Polycystic Kidney Disease: From Pathophysiology of Cystogenesis to Advances in the Treatment.
    Reiterová J; Tesař V
    Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Berberine slows cell growth in autosomal dominant polycystic kidney disease cells.
    Bonon A; Mangolini A; Pinton P; Del Senno L; Aguiari G
    Biochem Biophys Res Commun; 2013 Nov; 441(3):668-74. PubMed ID: 24184483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ganetespib limits ciliation and cystogenesis in autosomal-dominant polycystic kidney disease (ADPKD).
    Nikonova AS; Deneka AY; Kiseleva AA; Korobeynikov V; Gaponova A; Serebriiskii IG; Kopp MC; Hensley HH; Seeger-Nukpezah TN; Somlo S; Proia DA; Golemis EA
    FASEB J; 2018 May; 32(5):2735-2746. PubMed ID: 29401581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Autosomal dominant polycystic kidney disease and pioglitazone for its therapy: a comprehensive review with an emphasis on the molecular pathogenesis and pharmacological aspects.
    Saini AK; Saini R; Singh S
    Mol Med; 2020 Dec; 26(1):128. PubMed ID: 33308138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and function of polycystins: insights into polycystic kidney disease.
    Douguet D; Patel A; Honoré E
    Nat Rev Nephrol; 2019 Jul; 15(7):412-422. PubMed ID: 30948841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vasopressin and disruption of calcium signalling in polycystic kidney disease.
    Chebib FT; Sussman CR; Wang X; Harris PC; Torres VE
    Nat Rev Nephrol; 2015 Aug; 11(8):451-64. PubMed ID: 25870007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autosomal dominant polycystic kidney disease: clues to pathogenesis.
    Harris PC
    Hum Mol Genet; 1999; 8(10):1861-6. PubMed ID: 10469838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Autosomal dominant polycystic kidney disease (ADPKD, MIM 173900, PKD1 and PKD2 genes, protein products known as polycystin-1 and polycystin-2).
    Boucher C; Sandford R
    Eur J Hum Genet; 2004 May; 12(5):347-54. PubMed ID: 14872199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The inhibition of MDM2 slows cell proliferation and activates apoptosis in ADPKD cell lines.
    Patergnani S; Giattino A; Bianchi N; Giorgi C; Pinton P; Aguiari G
    Biol Cell; 2023 Jan; 115(1):e2200037. PubMed ID: 36165233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.