These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 30120407)

  • 1. The neurorestorative effect of human amniotic fluid stem cells on the chronic phase of neonatal hypoxic-ischemic encephalopathy in mice.
    Otani T; Ochiai D; Masuda H; Abe Y; Fukutake M; Matsumoto T; Miyakoshi K; Tanaka M
    Pediatr Res; 2019 Jan; 85(1):97-104. PubMed ID: 30120407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NF-κB Signaling is Involved in the Effects of Intranasally Engrafted Human Neural Stem Cells on Neurofunctional Improvements in Neonatal Rat Hypoxic-Ischemic Encephalopathy.
    Ji G; Liu M; Zhao XF; Liu XY; Guo QL; Guan ZF; Zhou HG; Guo JC
    CNS Neurosci Ther; 2015 Dec; 21(12):926-35. PubMed ID: 26255634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human pluripotent stem cell-derived ectomesenchymal stromal cells promote more robust functional recovery than umbilical cord-derived mesenchymal stromal cells after hypoxic-ischaemic brain damage.
    Huang J; U KP; Yang F; Ji Z; Lin J; Weng Z; Tsang LL; Merson TD; Ruan YC; Wan C; Li G; Jiang X
    Theranostics; 2022; 12(1):143-166. PubMed ID: 34987639
    [No Abstract]   [Full Text] [Related]  

  • 4. CXCL10 is a crucial chemoattractant for efficient intranasal delivery of mesenchymal stem cells to the neonatal hypoxic-ischemic brain.
    Hermans EC; Donega V; Heijnen CJ; de Theije CGM; Nijboer CH
    Stem Cell Res Ther; 2024 May; 15(1):134. PubMed ID: 38715091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural Stem Cells Expressing bFGF Reduce Brain Damage and Restore Sensorimotor Function after Neonatal Hypoxia-Ischemia.
    Ye Q; Wu Y; Wu J; Zou S; Al-Zaazaai AA; Zhang H; Shi H; Xie L; Liu Y; Xu K; He H; Zhang F; Ji Y; He Y; Xiao J
    Cell Physiol Biochem; 2018; 45(1):108-118. PubMed ID: 29316558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intranasally administered mesenchymal stem cells promote a regenerative niche for repair of neonatal ischemic brain injury.
    Donega V; Nijboer CH; van Tilborg G; Dijkhuizen RM; Kavelaars A; Heijnen CJ
    Exp Neurol; 2014 Nov; 261():53-64. PubMed ID: 24945601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Therapeutic Hypothermia Provides Variable Protection against Behavioral Deficits after Neonatal Hypoxia-Ischemia: A Potential Role for Brain-Derived Neurotrophic Factor.
    Diaz J; Abiola S; Kim N; Avaritt O; Flock D; Yu J; Northington FJ; Chavez-Valdez R
    Dev Neurosci; 2017; 39(1-4):257-272. PubMed ID: 28196356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of long-term safety and efficacy of intranasal mesenchymal stem cell treatment for neonatal brain injury in the mouse.
    Donega V; Nijboer CH; van Velthoven CT; Youssef SA; de Bruin A; van Bel F; Kavelaars A; Heijnen CJ
    Pediatr Res; 2015 Nov; 78(5):520-6. PubMed ID: 26270577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Delayed administration of neural stem cells after hypoxia-ischemia reduces sensorimotor deficits, cerebral lesion size, and neuroinflammation in neonatal mice.
    Braccioli L; Heijnen CJ; Coffer PJ; Nijboer CH
    Pediatr Res; 2017 Jan; 81(1-1):127-135. PubMed ID: 27632779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Transplantation of human fetal neural stem cells into cerebral ventricle of the neonatal rat following hypoxic-ischemic injury: survival, migration and differentiation].
    Qu SQ; Luan Z; Yin GC; Guo WL; Hu XH; Wu NH; Yan FQ; Qian YM
    Zhonghua Er Ke Za Zhi; 2005 Aug; 43(8):576-9. PubMed ID: 16191264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intranasal administration of human MSC for ischemic brain injury in the mouse: in vitro and in vivo neuroregenerative functions.
    Donega V; Nijboer CH; Braccioli L; Slaper-Cortenbach I; Kavelaars A; van Bel F; Heijnen CJ
    PLoS One; 2014; 9(11):e112339. PubMed ID: 25396420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induction of striatal neurogenesis enhances functional recovery in an adult animal model of neonatal hypoxic-ischemic brain injury.
    Im SH; Yu JH; Park ES; Lee JE; Kim HO; Park KI; Kim GW; Park CI; Cho SR
    Neuroscience; 2010 Aug; 169(1):259-68. PubMed ID: 20610036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactivating endogenous mechanisms of cardiac regeneration via paracrine boosting using the human amniotic fluid stem cell secretome.
    Balbi C; Lodder K; Costa A; Moimas S; Moccia F; van Herwaarden T; Rosti V; Campagnoli F; Palmeri A; De Biasio P; Santini F; Giacca M; Goumans MJ; Barile L; Smits AM; Bollini S
    Int J Cardiol; 2019 Jul; 287():87-95. PubMed ID: 30987834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of glycogen synthase kinase-3 (GSK3) promotes the neural differentiation of full-term amniotic fluid-derived stem cells towards neural progenitor cells.
    Gao L; Zhao M; Ye W; Huang J; Chu J; Yan S; Wang C; Zeng R
    Tissue Cell; 2016 Aug; 48(4):312-20. PubMed ID: 27346451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mesenchymal Stem Cells Protect Against Hypoxia-Ischemia Brain Damage by Enhancing Autophagy Through Brain Derived Neurotrophic Factor/Mammalin Target of Rapamycin Signaling Pathway.
    Zheng Z; Zhang L; Qu Y; Xiao G; Li S; Bao S; Lu QR; Mu D
    Stem Cells; 2018 Jul; 36(7):1109-1121. PubMed ID: 29451335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction between hypothermia and delayed mesenchymal stem cell therapy in neonatal hypoxic-ischemic brain injury.
    Herz J; Köster C; Reinboth BS; Dzietko M; Hansen W; Sabir H; van Velthoven C; Bendix I; Felderhoff-Müser U
    Brain Behav Immun; 2018 May; 70():118-130. PubMed ID: 29454023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human amniotic fluid stem cells have a unique potential to accelerate cutaneous wound healing with reduced fibrotic scarring like a fetus.
    Fukutake M; Ochiai D; Masuda H; Abe Y; Sato Y; Otani T; Sakai S; Aramaki-Hattori N; Shimoda M; Matsumoto T; Miyakoshi K; Kanai Y; Kishi K; Tanaka M
    Hum Cell; 2019 Jan; 32(1):51-63. PubMed ID: 30506493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neonatal hypoxic-ischemic encephalopathy reduces c-Fos activation in the rat hippocampus: evidence of a long-lasting effect.
    Souza A; Dussan-Sarria JA; Medeiros LF; Souza AC; Oliveira C; Scarabelot VL; Adachi LN; Winkelmann-Duarte EC; Philippi-Martins BB; Netto CA; Caumo W; Torres IL
    Int J Dev Neurosci; 2014 Nov; 38():213-22. PubMed ID: 25262910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Therapeutic potential of genetically modified mesenchymal stem cells after neonatal hypoxic-ischemic brain damage.
    van Velthoven CT; Braccioli L; Willemen HL; Kavelaars A; Heijnen CJ
    Mol Ther; 2014 Mar; 22(3):645-654. PubMed ID: 24172866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endogenous hypothermic response to hypoxia reduces brain injury: Implications for modeling hypoxic-ischemic encephalopathy and therapeutic hypothermia in neonatal mice.
    Reinboth BS; Köster C; Abberger H; Prager S; Bendix I; Felderhoff-Müser U; Herz J
    Exp Neurol; 2016 Sep; 283(Pt A):264-75. PubMed ID: 27349408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.