BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 30120498)

  • 1. More vection means more velocity storage activity: a factor in visually induced motion sickness?
    Nooij SAE; Pretto P; Bülthoff HH
    Exp Brain Res; 2018 Nov; 236(11):3031-3041. PubMed ID: 30120498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vection is the main contributor to motion sickness induced by visual yaw rotation: Implications for conflict and eye movement theories.
    Nooij SA; Pretto P; Oberfeld D; Hecht H; Bülthoff HH
    PLoS One; 2017; 12(4):e0175305. PubMed ID: 28380077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolating the effects of vection and optokinetic nystagmus on optokinetic rotation-induced motion sickness.
    Ji JT; So RH; Cheung RT
    Hum Factors; 2009 Oct; 51(5):739-51. PubMed ID: 20196298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optokinetic nystagmus, vection, and motion sickness.
    Flanagan MB; May JG; Dobie TG
    Aviat Space Environ Med; 2002 Nov; 73(11):1067-73. PubMed ID: 12433229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlations between individual susceptibility to visually induced motion sickness and decaying time constant of after-nystagmus.
    Guo CCT; Chen DJZ; Wei IY; So RHY; Cheung RTF
    Appl Ergon; 2017 Sep; 63():1-8. PubMed ID: 28502398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of the Stimulus Duration on the Adaptation of the Optokinetic Afternystagmus.
    Gygli J; Romano F; Bockisch CJ; Feddermann-Demont N; Straumann D; Bertolini G
    Front Neurol; 2021; 12():518133. PubMed ID: 33868138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Allocating less attention to central vision during vection is correlated with less motion sickness.
    Wei Y; Zheng J; So RHY
    Ergonomics; 2018 Jul; 61(7):933-946. PubMed ID: 29325490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optokinetic stimuli: motion sickness, visual acuity, and eye movements.
    Webb NA; Griffin MJ
    Aviat Space Environ Med; 2002 Apr; 73(4):351-8. PubMed ID: 11952055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integration of sensory information precedes the sensation of vection: a combined behavioral and event-related brain potential (ERP) study.
    Keshavarz B; Berti S
    Behav Brain Res; 2014 Feb; 259():131-6. PubMed ID: 24211538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inter-hemispheric desynchronization of the human MT+ during visually induced motion sickness.
    Miyazaki J; Yamamoto H; Ichimura Y; Yamashiro H; Murase T; Yamamoto T; Umeda M; Higuchi T
    Exp Brain Res; 2015 Aug; 233(8):2421-31. PubMed ID: 26014459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optokinetic nystagmus correlates with severity of vection-induced motion sickness and gastric tachyarrhythmia.
    Hu S; Stern RM
    Aviat Space Environ Med; 1998 Dec; 69(12):1162-5. PubMed ID: 9856540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Evaluation of optokinetic afternystagmus (OKAN) induced by cyclo-rotatory optokinetic stimulation (C-OKst)].
    Endoh K; Igarashi M; Ishida K; Iida M; Sakai M
    Nihon Jibiinkoka Gakkai Kaiho; 1998 Mar; 101(3):279-88. PubMed ID: 9584467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optokinetic drum tilt hastens the onset of vection-induced motion sickness.
    Bubka A; Bonato F
    Aviat Space Environ Med; 2003 Apr; 74(4):315-9. PubMed ID: 12688448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prolonged reduction of motion sickness sensitivity by visual-vestibular interaction.
    Dai M; Raphan T; Cohen B
    Exp Brain Res; 2011 May; 210(3-4):503-13. PubMed ID: 21287155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of fixation and restricted visual field on vection-induced motion sickness.
    Stern RM; Hu S; Anderson RB; Leibowitz HW; Koch KL
    Aviat Space Environ Med; 1990 Aug; 61(8):712-5. PubMed ID: 2400374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative analysis of the velocity characteristics of optokinetic nystagmus and optokinetic after-nystagmus.
    Cohen B; Matsuo V; Raphan T
    J Physiol; 1977 Sep; 270(2):321-44. PubMed ID: 409838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Up-down asymmetry in vertical vection.
    Seya Y; Shinoda H; Nakaura Y
    Vision Res; 2015 Dec; 117():16-24. PubMed ID: 26518744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Motion sickness-susceptible participants exposed to coherent rotating dot patterns show excessive N2 amplitudes and impaired theta-band phase synchronization.
    Wei Y; Okazaki YO; So RHY; Chu WCW; Kitajo K
    Neuroimage; 2019 Nov; 202():116028. PubMed ID: 31326576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motion sickness severity under interaction of vection and head movements.
    Yang TD; Pei JS
    Aviat Space Environ Med; 1991 Feb; 62(2):141-4. PubMed ID: 2001210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visual blur and motion sickness in an optokinetic drum.
    Bonato F; Bubka A; Thornton W
    Aerosp Med Hum Perform; 2015 May; 86(5):440-4. PubMed ID: 25945660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.