These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 30120792)
1. Eicosanoid mediation of immune responses at early bacterial infection stage and its inhibition by Photorhabdus temperata subsp. temperata, an entomopathogenic bacterium. Kim H; Choi D; Jung J; Kim Y Arch Insect Biochem Physiol; 2018 Dec; 99(4):e21502. PubMed ID: 30120792 [TBL] [Abstract][Full Text] [Related]
2. Differential immunosuppression by inhibiting PLA Ahmed S; Kim Y J Invertebr Pathol; 2018 Sep; 157():136-146. PubMed ID: 29802883 [TBL] [Abstract][Full Text] [Related]
3. Two groups of entomopathogenic bacteria, Photorhabdus and Xenorhabdus, share an inhibitory action against phospholipase A2 to induce host immunodepression. Kim Y; Ji D; Cho S; Park Y J Invertebr Pathol; 2005 Jul; 89(3):258-64. PubMed ID: 15979640 [TBL] [Abstract][Full Text] [Related]
4. An entomopathogenic bacterium, Xenorhabdus nematophila, inhibits the expression of an antibacterial peptide, cecropin, of the beet armyworm, Spodoptera exigua. Ji D; Kim Y J Insect Physiol; 2004 Jun; 50(6):489-96. PubMed ID: 15183278 [TBL] [Abstract][Full Text] [Related]
5. Enhancement of an entomopathogenic fungal virulence against the seedcorn maggot, Delia platura, by suppressing immune responses with a bacterial culture broth of Photorhabdus temperata subsp. temperata. Abdisa E; Park H; Kwon J; Jin G; Esmaeily M; Kim Y Arch Insect Biochem Physiol; 2024 Mar; 115(3):e22103. PubMed ID: 38517449 [TBL] [Abstract][Full Text] [Related]
6. Biosynthetic pathway of arachidonic acid in Spodoptera exigua in response to bacterial challenge. Hasan MA; Ahmed S; Kim Y Insect Biochem Mol Biol; 2019 Aug; 111():103179. PubMed ID: 31255640 [TBL] [Abstract][Full Text] [Related]
7. Manipulation of GameXPeptide synthetase gene expression by a promoter exchange alters the virulence of an entomopathogenic bacterium, Jin G; Hrithik MTH; Lee DH; Kim IH; Jung JS; Bode HB; Kim Y Front Microbiol; 2023; 14():1271764. PubMed ID: 38173677 [TBL] [Abstract][Full Text] [Related]
8. An entomopathogenic bacterium, Xenorhabdus hominickii ANU101, produces oxindole and suppresses host insect immune response by inhibiting eicosanoid biosynthesis. Sadekuzzaman M; Park Y; Lee S; Kim K; Jung JK; Kim Y J Invertebr Pathol; 2017 May; 145():13-22. PubMed ID: 28302381 [TBL] [Abstract][Full Text] [Related]
9. Virulent secondary metabolites of entomopathogenic bacteria genera, Xenorhabdus and Photorhabdus, inhibit phospholipase A Mollah MMI; Kim Y BMC Microbiol; 2020 Nov; 20(1):359. PubMed ID: 33228536 [TBL] [Abstract][Full Text] [Related]
10. Toll signal pathway activating eicosanoid biosynthesis shares its conserved upstream recognition components in a lepidopteran Spodoptera exigua upon infection by Metarhizium rileyi, an entomopathogenic fungus. Roy MC; Kim Y J Invertebr Pathol; 2022 Feb; 188():107707. PubMed ID: 34952100 [TBL] [Abstract][Full Text] [Related]
11. Eicosanoids mediate prophenoloxidase release from oenocytoids in the beet armyworm Spodoptera exigua. Shrestha S; Kim Y Insect Biochem Mol Biol; 2008 Jan; 38(1):99-112. PubMed ID: 18070669 [TBL] [Abstract][Full Text] [Related]
12. Eicosanoid biosynthesis is activated via Toll, but not Imd signal pathway in response to fungal infection. Park JA; Kim Y J Invertebr Pathol; 2012 Jul; 110(3):382-8. PubMed ID: 22569137 [TBL] [Abstract][Full Text] [Related]
13. Differential Change Patterns of Main Antimicrobial Peptide Genes During Infection of Entomopathogenic Nematodes and Their Symbiotic Bacteria. Darsouei R; Karimi J; Ghadamyari M; Hosseini M J Parasitol; 2017 Aug; 103(4):349-358. PubMed ID: 28395586 [TBL] [Abstract][Full Text] [Related]
14. Phospholipase A2 inhibitors synthesized by two entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus temperata subsp. temperata. Seo S; Lee S; Hong Y; Kim Y Appl Environ Microbiol; 2012 Jun; 78(11):3816-23. PubMed ID: 22447611 [TBL] [Abstract][Full Text] [Related]
15. Effects of entomopathogenic bacterium Photorhabdus temperata infection on the intestinal microbiota of the sugarcane stalk borer Diatraea saccharalis (Lepidoptera: Crambidae). Carneiro CN; DaMatta RA; Samuels RI; Silva CP J Invertebr Pathol; 2008 Sep; 99(1):87-91. PubMed ID: 18406423 [TBL] [Abstract][Full Text] [Related]
16. Various eicosanoids modulate the cellular and humoral immune responses of the beet armyworm, Spodoptera exigua. Shrestha S; Kim Y Biosci Biotechnol Biochem; 2009 Sep; 73(9):2077-84. PubMed ID: 19734670 [TBL] [Abstract][Full Text] [Related]
17. Identification of an entomopathogenic bacterium, Xenorhabdus ehlersii KSY, from Steinernema longicaudum GNUS101 and its immunosuppressive activity against insect host by inhibiting eicosanoid biosynthesis. Kim H; Keum S; Hasan A; Kim H; Jung Y; Lee D; Kim Y J Invertebr Pathol; 2018 Nov; 159():6-17. PubMed ID: 30389324 [TBL] [Abstract][Full Text] [Related]
18. Phurealipids, produced by the entomopathogenic bacteria, Photorhabdus, mimic juvenile hormone to suppress insect immunity and immature development. Ahmed S; Tafim Hossain Hrithik M; Chandra Roy M; Bode H; Kim Y J Invertebr Pathol; 2022 Sep; 193():107799. PubMed ID: 35850258 [TBL] [Abstract][Full Text] [Related]
19. Dual Oxidase-Derived Reactive Oxygen Species Against Sajjadian SM; Kim Y Front Microbiol; 2020; 11():528. PubMed ID: 32292400 [TBL] [Abstract][Full Text] [Related]
20. The exbD gene of Photorhabdus temperata is required for full virulence in insects and symbiosis with the nematode Heterorhabditis. Watson RJ; Joyce SA; Spencer GV; Clarke DJ Mol Microbiol; 2005 May; 56(3):763-73. PubMed ID: 15819630 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]