These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 30120802)

  • 41. Responses of phenology and biomass production of boreal fens to climate warming under different water-table level regimes.
    Mäkiranta P; Laiho R; Mehtätalo L; Straková P; Sormunen J; Minkkinen K; Penttilä T; Fritze H; Tuittila ES
    Glob Chang Biol; 2018 Mar; 24(3):944-956. PubMed ID: 28994163
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Migration and transformation of dissolved carbon during accumulated cyanobacteria decomposition in shallow eutrophic lakes: a simulated microcosm study.
    Li Z; Zhao Y; Xu X; Han R; Wang M; Wang G
    PeerJ; 2018; 6():e5922. PubMed ID: 30425899
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cellulase activity and dissolved organic carbon release from lignocellulose macrophyte-derived in four trophic conditions.
    Bottino F; Cunha-Santino MB; Bianchini I
    Braz J Microbiol; 2016; 47(2):352-8. PubMed ID: 26991278
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Warming Enhances the Co-Metabolism Effect During the Decomposition of Sediment Organic Carbon in Eutrophic Lakes.
    Ma J; Lai Q; He F; Li W; Li Z
    Bull Environ Contam Toxicol; 2022 Dec; 109(6):984-989. PubMed ID: 36178504
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Deposition and burial of organic carbon in coastal salt marsh: research progress].
    Cao L; Song JM; Li XG; Yuan HM; Li N; Duan LQ
    Ying Yong Sheng Tai Xue Bao; 2013 Jul; 24(7):2040-8. PubMed ID: 24175538
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Soil-plant N processes in a High Arctic ecosystem, NW Greenland are altered by long-term experimental warming and higher rainfall.
    Schaeffer SM; Sharp E; Schimel JP; Welker JM
    Glob Chang Biol; 2013 Nov; 19(11):3529-39. PubMed ID: 23843128
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Expanding Greenland seagrass meadows contribute new sediment carbon sinks.
    Marbà N; Krause-Jensen D; Masqué P; Duarte CM
    Sci Rep; 2018 Sep; 8(1):14024. PubMed ID: 30232387
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Long-term decomposition captures key steps in microbial breakdown of seagrass litter.
    Trevathan-Tackett SM; Jeffries TC; Macreadie PI; Manojlovic B; Ralph P
    Sci Total Environ; 2020 Feb; 705():135806. PubMed ID: 31838420
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Soil warming and CO2 enrichment induce biomass shifts in alpine tree line vegetation.
    Dawes MA; Philipson CD; Fonti P; Bebi P; Hättenschwiler S; Hagedorn F; Rixen C
    Glob Chang Biol; 2015 May; 21(5):2005-21. PubMed ID: 25471674
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Decadally cycling soil carbon is more sensitive to warming than faster-cycling soil carbon.
    Lin J; Zhu B; Cheng W
    Glob Chang Biol; 2015 Dec; 21(12):4602-12. PubMed ID: 26301625
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of predicted climatic changes on distribution of organic contaminants in brackish water mesocosms.
    Ripszam M; Gallampois CM; Berglund Å; Larsson H; Andersson A; Tysklind M; Haglund P
    Sci Total Environ; 2015 Jun; 517():10-21. PubMed ID: 25710621
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of experimental throughfall reduction and soil warming on fine root biomass and its decomposition in a warm temperate oak forest.
    Liu Y; Liu S; Wan S; Wang J; Wang H; Liu K
    Sci Total Environ; 2017 Jan; 574():1448-1455. PubMed ID: 27693152
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Deep peat warming increases surface methane and carbon dioxide emissions in a black spruce-dominated ombrotrophic bog.
    Gill AL; Giasson MA; Yu R; Finzi AC
    Glob Chang Biol; 2017 Dec; 23(12):5398-5411. PubMed ID: 28675635
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Rising sea level, temperature, and precipitation impact plant and ecosystem responses to elevated CO2 on a Chesapeake Bay wetland: review of a 28-year study.
    Drake BG
    Glob Chang Biol; 2014 Nov; 20(11):3329-43. PubMed ID: 24820033
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Climate change-induced vegetation change as a driver of increased subarctic biogenic volatile organic compound emissions.
    Valolahti H; Kivimäenpää M; Faubert P; Michelsen A; Rinnan R
    Glob Chang Biol; 2015 Sep; 21(9):3478-88. PubMed ID: 25994223
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Temperature-controlled organic carbon mineralization in lake sediments.
    Gudasz C; Bastviken D; Steger K; Premke K; Sobek S; Tranvik LJ
    Nature; 2010 Jul; 466(7305):478-81. PubMed ID: 20651689
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Response of salt-marsh carbon accumulation to climate change.
    Kirwan ML; Mudd SM
    Nature; 2012 Sep; 489(7417):550-3. PubMed ID: 23018965
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Factors regulating carbon sinks in mangrove ecosystems.
    Li SB; Chen PH; Huang JS; Hsueh ML; Hsieh LY; Lee CL; Lin HJ
    Glob Chang Biol; 2018 Sep; 24(9):4195-4210. PubMed ID: 29790233
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ecosystem carbon storage does not vary with mean annual temperature in Hawaiian tropical montane wet forests.
    Selmants PC; Litton CM; Giardina CP; Asner GP
    Glob Chang Biol; 2014 Sep; 20(9):2927-37. PubMed ID: 24838341
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Grassland productivity and carbon sequestration in Mongolian grasslands: The underlying mechanisms and nomadic implications.
    Shao C; Chen J; Chu H; Lafortezza R; Dong G; Abraha M; Batkhishig O; John R; Ouyang Z; Zhang Y; Qi J
    Environ Res; 2017 Nov; 159():124-134. PubMed ID: 28797887
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.