BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 30120857)

  • 41. Olfactory Dysfunction as an Early Biomarker in Parkinson's Disease.
    Fullard ME; Morley JF; Duda JE
    Neurosci Bull; 2017 Oct; 33(5):515-525. PubMed ID: 28831680
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Olfactory dysfunction in Parkinson's disease.
    Kranick SM; Duda JE
    Neurosignals; 2008; 16(1):35-40. PubMed ID: 18097158
    [TBL] [Abstract][Full Text] [Related]  

  • 43. REM sleep behavior and olfactory dysfunction: Enhancing the utility and translation of animal models in the search for precision medicines for Parkinson's disease.
    Ahnaou A; Drinkenburg WHIM
    Neurosci Biobehav Rev; 2022 Dec; 143():104897. PubMed ID: 36183864
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Detection of preclinical Parkinson's disease along the olfactory trac(t).
    Berendse HW; Ponsen MM
    J Neural Transm Suppl; 2006; (70):321-5. PubMed ID: 17017547
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dermal phospho-alpha-synuclein deposits confirm REM sleep behaviour disorder as prodromal Parkinson's disease.
    Doppler K; Jentschke HM; Schulmeyer L; Vadasz D; Janzen A; Luster M; Höffken H; Mayer G; Brumberg J; Booij J; Musacchio T; Klebe S; Sittig-Wiegand E; Volkmann J; Sommer C; Oertel WH
    Acta Neuropathol; 2017 Apr; 133(4):535-545. PubMed ID: 28180961
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Alzheimer's disease and alpha-synuclein pathology in the olfactory bulbs of infants, children, teens and adults ≤ 40 years in Metropolitan Mexico City. APOE4 carriers at higher risk of suicide accelerate their olfactory bulb pathology.
    Calderón-Garcidueñas L; González-Maciel A; Reynoso-Robles R; Kulesza RJ; Mukherjee PS; Torres-Jardón R; Rönkkö T; Doty RL
    Environ Res; 2018 Oct; 166():348-362. PubMed ID: 29935448
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Metal concentrations and distributions in the human olfactory bulb in Parkinson's disease.
    Gardner B; Dieriks BV; Cameron S; Mendis LHS; Turner C; Faull RLM; Curtis MA
    Sci Rep; 2017 Sep; 7(1):10454. PubMed ID: 28874699
    [TBL] [Abstract][Full Text] [Related]  

  • 48. RNA sequencing of olfactory bulb in Parkinson's disease reveals gene alterations associated with olfactory dysfunction.
    Tremblay C; Aslam S; Walker JE; Lorenzini I; Intorcia AJ; Arce RA; Choudhury P; Adler CH; Shill HA; Driver-Dunckley E; Mehta S; Piras IS; Belden CM; Atri A; Beach TG; Serrano GE
    Neurobiol Dis; 2024 Jun; 196():106514. PubMed ID: 38663633
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Deployment of Label-Free Quantitative Olfactory Proteomics to Detect Cerebrospinal Fluid Biomarker Candidates in Synucleinopathies.
    Lachén-Montes M; González-Morales A; Fernández-Irigoyen J; Santamaría E
    Methods Mol Biol; 2019; 2044():273-289. PubMed ID: 31432419
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Minocycline restores olfactory bulb volume and olfactory behavior after traumatic brain injury in mice.
    Siopi E; Calabria S; Plotkine M; Marchand-Leroux C; Jafarian-Tehrani M
    J Neurotrauma; 2012 Jan; 29(2):354-61. PubMed ID: 21910642
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Olfactory dysfunction and neurotransmitter disturbance in olfactory bulb of transgenic mice expressing human A53T mutant α-synuclein.
    Zhang S; Xiao Q; Le W
    PLoS One; 2015; 10(3):e0119928. PubMed ID: 25799501
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Olfactory bulb volumes in patients with idiopathic Parkinson's disease a pilot study.
    Mueller A; Abolmaali ND; Hakimi AR; Gloeckler T; Herting B; Reichmann H; Hummel T
    J Neural Transm (Vienna); 2005 Oct; 112(10):1363-70. PubMed ID: 15711853
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Distribution of pre-pro-glucagon and glucagon-like peptide-1 receptor messenger RNAs in the rat central nervous system.
    Merchenthaler I; Lane M; Shughrue P
    J Comp Neurol; 1999 Jan; 403(2):261-80. PubMed ID: 9886047
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Topical Administration of GLP-1 Receptor Agonists Prevents Retinal Neurodegeneration in Experimental Diabetes.
    Hernández C; Bogdanov P; Corraliza L; García-Ramírez M; Solà-Adell C; Arranz JA; Arroba AI; Valverde AM; Simó R
    Diabetes; 2016 Jan; 65(1):172-87. PubMed ID: 26384381
    [TBL] [Abstract][Full Text] [Related]  

  • 55. MRI diffusion in Parkinson's disease: using the technique's inherent directional information to study the olfactory bulb and substantia nigra.
    Skorpil M; Söderlund V; Sundin A; Svenningsson P
    J Parkinsons Dis; 2012; 2(2):171-80. PubMed ID: 23939442
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Glucagon-like peptide-1 receptor action in the vasculature.
    Almutairi M; Al Batran R; Ussher JR
    Peptides; 2019 Jan; 111():26-32. PubMed ID: 30227157
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A clinical approach towards smell loss in Parkinson's disease.
    Haehner A; Hummel T; Reichmann H
    J Parkinsons Dis; 2014; 4(2):189-95. PubMed ID: 24322062
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A novel GLP-1/GIP dual agonist is more effective than liraglutide in reducing inflammation and enhancing GDNF release in the MPTP mouse model of Parkinson's disease.
    Yuan Z; Li D; Feng P; Xue G; Ji C; Li G; Hölscher C
    Eur J Pharmacol; 2017 Oct; 812():82-90. PubMed ID: 28666800
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Is Exenatide a Treatment for Parkinson's Disease?
    Athauda D; Wyse R; Brundin P; Foltynie T
    J Parkinsons Dis; 2017; 7(3):451-458. PubMed ID: 28777758
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The course of olfactory deficits in patients with Parkinson's disease--a study based on psychophysical and electrophysiological measures.
    Meusel T; Westermann B; Fuhr P; Hummel T; Welge-Lüssen A
    Neurosci Lett; 2010 Dec; 486(3):166-70. PubMed ID: 20858529
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.