BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 30121135)

  • 1. Inhibition of microglial activation by minocycline reduced preoligodendrocyte injury in a neonatal rat brain slice model.
    Huang J; Liu G; Shi B; Shi G; He X; Lu Z; Zheng J; Zhang H; Chen H; Zhu Z
    J Thorac Cardiovasc Surg; 2018 Dec; 156(6):2271-2280. PubMed ID: 30121135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of Microglial Activation by Delayed Mild Hypothermia Reduced Preoligodendrocyte Injury in a Neonatal Rat Brain Slice Model.
    Liang S; Ti Y; Huang J; Li X; Zhou W
    Ther Hypothermia Temp Manag; 2023 Sep; 13(3):134-140. PubMed ID: 36862528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Minocycline attenuates lipopolysaccharide-induced white matter injury in the neonatal rat brain.
    Fan LW; Pang Y; Lin S; Rhodes PG; Cai Z
    Neuroscience; 2005; 133(1):159-68. PubMed ID: 15893639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Minocycline attenuates brain tissue levels of TNF-α produced by neurons after prolonged hypothermic cardiac arrest in rats.
    Drabek T; Janata A; Wilson CD; Stezoski J; Janesko-Feldman K; Tisherman SA; Foley LM; Verrier JD; Kochanek PM
    Resuscitation; 2014 Feb; 85(2):284-91. PubMed ID: 24513126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep hypothermia attenuates microglial proliferation independent of neuronal death after prolonged cardiac arrest in rats.
    Drabek T; Tisherman SA; Beuke L; Stezoski J; Janesko-Feldman K; Lahoud-Rahme M; Kochanek PM
    Anesth Analg; 2009 Sep; 109(3):914-23. PubMed ID: 19690267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of preoperative hypoxia on white matter injury associated with cardiopulmonary bypass in a rodent hypoxic and brain slice model.
    Agematsu K; Korotcova L; Scafidi J; Gallo V; Jonas RA; Ishibashi N
    Pediatr Res; 2014 May; 75(5):618-25. PubMed ID: 24488087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of microglial activation contributes to propofol-induced protection against post-cardiac arrest brain injury in rats.
    Wang W; Lu R; Feng DY; Liang LR; Liu B; Zhang H
    J Neurochem; 2015 Sep; 134(5):892-903. PubMed ID: 26016627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rodent brain slice model for the study of white matter injury.
    Murata A; Agematsu K; Korotcova L; Gallo V; Jonas RA; Ishibashi N
    J Thorac Cardiovasc Surg; 2013 Dec; 146(6):1526-1533.e1. PubMed ID: 23540655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Minocycline alleviates hypoxic-ischemic injury to developing oligodendrocytes in the neonatal rat brain.
    Cai Z; Lin S; Fan LW; Pang Y; Rhodes PG
    Neuroscience; 2006; 137(2):425-35. PubMed ID: 16289838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Minocycline treatment following hypoxic/ischaemic injury attenuates white matter injury in a rodent model of periventricular leucomalacia.
    Lechpammer M; Manning SM; Samonte F; Nelligan J; Sabo E; Talos DM; Volpe JJ; Jensen FE
    Neuropathol Appl Neurobiol; 2008 Aug; 34(4):379-93. PubMed ID: 18221261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Minocycline attenuates hypoxia-ischemia-induced neurological dysfunction and brain injury in the juvenile rat.
    Fan LW; Lin S; Pang Y; Rhodes PG; Cai Z
    Eur J Neurosci; 2006 Jul; 24(2):341-50. PubMed ID: 16836639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Post-insult minocycline treatment attenuates hypoxia-ischemia-induced neuroinflammation and white matter injury in the neonatal rat: a comparison of two different dose regimens.
    Carty ML; Wixey JA; Colditz PB; Buller KM
    Int J Dev Neurosci; 2008 Aug; 26(5):477-85. PubMed ID: 18387771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Minocycline protects the immature white matter against hyperoxia.
    Schmitz T; Krabbe G; Weikert G; Scheuer T; Matheus F; Wang Y; Mueller S; Kettenmann H; Matyash V; Bührer C; Endesfelder S
    Exp Neurol; 2014 Apr; 254():153-65. PubMed ID: 24491957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of hypothermic cardiopulmonary bypass and total circulatory arrest on cerebral metabolism in neonates, infants, and children.
    Greeley WJ; Kern FH; Ungerleider RM; Boyd JL; Quill T; Smith LR; Baldwin B; Reves JG
    J Thorac Cardiovasc Surg; 1991 May; 101(5):783-94. PubMed ID: 2023435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Postoperative hypoxemia exacerbates potential brain injury after deep hypothermic circulatory arrest.
    Tsui SS; Schultz JM; Shen I; Ungerleider RM
    Ann Thorac Surg; 2004 Jul; 78(1):188-96; discussion 188-96. PubMed ID: 15223426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hv1 proton channel facilitates production of ROS and pro-inflammatory cytokines in microglia and enhances oligodendrocyte progenitor cells damage from oxygen-glucose deprivation in vitro.
    Yu Y; Yu Z; Xie M; Wang W; Luo X
    Biochem Biophys Res Commun; 2018 Mar; 498(1):1-8. PubMed ID: 28676401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel target to reduce microglial inflammation and neuronal damage after deep hypothermic circulatory arrest.
    Liu M; Li Y; Gao S; Yan S; Zhang Q; Liu G; Ji B
    J Thorac Cardiovasc Surg; 2020 Jun; 159(6):2431-2444.e7. PubMed ID: 31564537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neurologic outcome after cardiopulmonary bypass with deep hypothermic circulatory arrest in rats: description of a new model.
    Jungwirth B; Mackensen GB; Blobner M; Neff F; Reichart B; Kochs EF; Nollert G
    J Thorac Cardiovasc Surg; 2006 Apr; 131(4):805-12. PubMed ID: 16580438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Curcumin protects pre-oligodendrocytes from activated microglia in vitro and in vivo.
    He LF; Chen HJ; Qian LH; Chen GY; Buzby JS
    Brain Res; 2010 Jun; 1339():60-9. PubMed ID: 20403340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of cerebral metabolism and quantitative electroencephalography after hypothermic circulatory arrest and low-flow cardiopulmonary bypass at different temperatures.
    Mezrow CK; Midulla PS; Sadeghi AM; Gandsas A; Wang W; Dapunt OE; Zappulla R; Griepp RB
    J Thorac Cardiovasc Surg; 1994 Apr; 107(4):1006-19. PubMed ID: 8159021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.